
In the March ‘06 issue
of SERVO Magazine, I
introduced you to a

program called AutoFlex — a
tool used for developing
autonomous routines for FRC
(First Robotics Competition)
robot controllers.

The program was created by
members of FRC Team 1675 when
they realized that they were going to
the FIRST (For Inspiration and
Recognition of Science and
Technology) National Championships
in Atlanta, GA without any
autonomous functionality for their
robot. Without having access to the
robot until the event, they needed a
way to quickly program the robot
to perform some task during the
autonomous period. The solution was
to create a program that would allow
the team’s driver to teach the robot
what it had to do during the
autonomous period by recording the
driver’s commands as he drove
through the autonomous routine.
Training took place on the practice
field before the matches started.
At the beginning of the match, the
robot would repeat the commands
that it was taught.

In 2005 during the Triple play
competition, the robot scored two
tetras during each autonomous
period. During the 2006 Aim High
competition, the robot could drive

up to the goal and shoot an entire
magazine of balls through the hole
(most of the time).

The original program was a little
cumbersome and complicated to use.
While the driver commanded the
robot through the routine that was
to be recorded and then played it
back during the autonomous mode,
a programmer — with a laptop
connected to the robot via a serial
cable — chased (or was chased by) the
robot as he captured data. The
data then had to be loaded into a
file and the whole program was
recompiled and reloaded into the
robot. From the sidelines, this was fun
to watch, but those actually involved
in the process were often quite
stressed and in peril.

Autoflex has been simplified and
updated to version 2.0 to take
advantage of the internal EEPROM
memory available in the FRC robot
controller. Commands are now written
directly to the EEPROM memory. No

more laptops and cables, editing data,
and reprogramming. Programmer
stress levels have been greatly reduced!

Imagine This!

During practice, you set your
robot on the playing field, click a
button on the operator interface and
start driving. Then you set your robot
back to the starting point, connect a
dongle to the competition port of the
operator interface and flip the dongle
switch to autonomous and the robot
will replay the practice session you
just recorded. Don’t like what you
see? Just reset the dongle switch
back to the off position and just click
the program button again to re-record
another session until you get it
right. Neat, eh?? Your robot is

AUTOFLEX 2.0
New and Improved Autonomous
Programming Tool for FIRST Robots

28 SERVO 11.2007

FIGURE 1. Team 1675’s first robot
programmed with Autoflex for the

FIRST Triple Play competition would
know one tetra from the goal and

cap the second during the
autonomous period.

by Brian Cieslak

Photos courtesy of FRC Team 1675 —
The Ultimate Protection Squad.

ready to run during the autonomous
period, all in about 15 minutes.

Getting Started

A .zip file can be downloaded
from the FRC Team 1675 website (see
Web Links sidebar) that includes a
version of the FRC default code with
AutoFlex included. I/O mapping for the
default program is as follows:

Joystick 1 - Y axis to PWM_1
Joystick 2 - Y axis to PWM_2
Joystick 1 - X axis to PWM_5
Joystick 2 - X axis to PWM_6

Set your robot to program mode
and download the FRCAutoFlex.hex file
using the IFIdownloader program
available from the IFI website (www.
ifirobotics.com).

Attach a programming dongle to
the competition port of the operator
interface (instructions on how to make
your own are also available from the IFI
website) and set the autonomous
switch to the open position. You are
now ready to start programming
your robot for autonomous operation.
The FRCAutoFlexCode.hex program
records four inputs: joystick 1 x-axis,
joystick 1 y-axis, joystick 2 x-axis, and
joystick 2 y-axis.

Click the trigger on the port 1
joystick to start recording. You now
have 15 seconds to drive through your
autonomous routine. After 15 seconds,
the robot stops recording commands
even though it lets you keep driving.

To replay what you just recorded,
‘close’ the autonomous switch on the
dongle. Watch out! Your robot will
start to execute the code you just
recorded. The robot will play 15
seconds of commands and then
stop until you open the autonomous
switch again.

Once you are satisfied with the
autonomous routine you’ve recorded,
place a jumper on the ‘digital
input 1’ pins. This write protects
your autonomous program
from being accidentally erased
if you click the trigger while
driving around.

That’s the basic operation.

Now you are an
expert.

For the
Beginning
FIRST
Programmer

If you are just
learning to program
a FIRST robot, a
sample project that
is fully functional is
included in the zip
file you can download from the Team
1675 website that can serve as a tem-
plate to get you started. The program-
ming kit that comes with your robot
includes a disk with the MPLAB-IDE
programming environment and the
C18-Complier Version 2.4, as well as
the downloader program. You will
need these tools to compile and down-
load your program to the robot.

Adding Autoflex to
Your Existing Code

Adding AutoFlex to your existing
code is simple if all the calls to your
control functions (motor control,
manipulator arm, etc.) are made from
the Default_Routine() function found
in the User_Routines.c file.

You must do the following (refer
to the sample code provided):

1) Copy the following files to your
project folder, then open MPLAB and
add them to your project:

a) AutoFlex.c
b) Autoflex.h
c VEX_eeprom.c
d) VEX_eeprom.h

2) Open the user_routines_fast.c
file. Add a call to the function
autoflex_playback() to the user_
autonomous_code() function as

shown in Figure 2. Also add the
#include”AutoFlex.h statement at the
beginning of the file.

3) Open the user_routines.c file. Add a
call to the function autoflex_recorder()
to the Process_Data_From_ Master_
uP() function as shown in Figure 3.
Also add the #include”AutoFlex.h”
statement at the beginning of the file.

4) Open the main.c file. Add a call to
the function rewind_autoflex_
playback() to the main()function as
shown in Figure 5. Also add the
#include"AutoFlex.h" statement at the
beginning of the file.

SERVO 11.2007 29

FIGURE 4. Team 1675’s Aim High robot
would drive up to the goal and shoot
most of its 10 balls through the hole.

FIGURE 2

FIGURE 3

5) Configure Autoflex.h to reflect your
robot system. Sections that you
may want to consider changing include
the following:

a) Determine how many inputs you
want to capture and which ones.
//add defines here to assign
//commands to user controls that
// you want record/
#define AUTO_COMMAND1 p1_x
//left Joystick x
#define AUTO_COMMAND2 p1_y
//left Joystick y
#define AUTO_COMMAND3 p2_y
//right joystick y
#define AUTO_COMMAND4 p2_x
//right joystick x
//#define AUTO_COMMAND5
//uncomment to add another input
//#define AUTO_COMMAND6
//uncomment to add another input

// Number of inputs we plan to
//record
// Default is set up to save 4 inputs.
//You can save up to 6
// inputs. You can define two auto
//command lines above.
// then change the number of

//inputs on the line below.
#define NUM_OF_INPUTS 4i

b) You can determine what you want
to use as the ‘Record Button.’ The
default is port 1 trigger Button.

//define the mechanism that will
//act as the record button.
//In this example port trigger is a
//button on the OI.
// that you would press to the
//forward position to start recording

#define \
AUTO_BUTTON_REV_THRESH \
(unsigned char)100 // used by Vex
#define \
AUTO_BUTTON_FWD_THRESH \
(unsigned char)154 // used by Vex
#define \
AUTO_NEUTRAL_PWM_VALUE \
(unsigned char)127

#define AUTO_RECORD (p1_sw_trig)
//port_1 trigger to start recording

c) You can adjust the length of time
you want to record commands by
changing the TIME_LIMIT value.
Default is 150 tenths of a second
(or 15 seconds). The maximum value
of TIME_LIMIT depends on the
number of inputs you are trying
to save. The max number of
command values that can be saved
is 1,024. To determine the max time
available, use the following formula

(1024/ number_of_inputs) - 1 =
max_tenths_of_seconds. For exam-
ple: (1024/4 inputs)-1 = 255, so
TIME_LIMIT could be set to 255
tenths_of_seconds. (25.5 seconds).

// The length of the autonomous
routine in tenths of seconds
#define TIME_LIMIT 150

d) You can assign which digital port
you want to use for your WRITE_
PROTECT jumper. If you don’t want
to write protect your autonomous
code or you have used up all your
digital ports, re-define WRITE_
PROTECT to ‘1.’

// if jumper in place then do not
//record (assuming jumper pulls pin
//low)
#define WRITE_PROTECT \
(rc_dig_in01)

e) Since an FRC robot uses a
longer timing interval than VEX
robots during autonomous opera-
tion, uncomment the #define FRC 1
line to adjust the timing if you are
adding Autoflex to a FRC robot.

No More Excuses
to Sit Idle!

When I attended FIRST Regional
competitions in Milwaukee, WI and
Cleveland, OH and the FIRST National
Championship in Atlanta, I was
surprised by how many robots sat idle
during the autonomous segment of
the match. Our team started touting
the benefits and simplicity of the
Autoflex program there and enabled
several teams to compete during that
15 second period at the beginning of
the match. Even sending the robot out
to a defensive position is better than
just sitting there.

I do want to emphasize, though,
that Autoflex is not a substitute for a
well thought out autonomous program
that uses sensors and feedback
algorithms. To be truly autonomous,
the robot must be aware of and react
to its environment. So programmers,
you are not off the hook.

See you in the ‘Pits.’ SV

For Autoflex files
http://team1675.com/

teamdownload.html

For competition
port dongle

www.ifirobotics.com/
oi.shtml

Web Links

Brian Cieslak is a mentor for FIRST
Team 1675, The Ultimate Protection
Squad. He can be contacted via
email at K9WIS@yahoo.com.

Contact the Author

30 SERVO 11.2007

FIGURE 5

FIGURE 6. Autoflex was used to program
a large claw-like manipulator during the
autonomous period at the beginning
of the Rack-n-Roll competiton.

