
O
ne area that has been neglected over the years is
the electronics field that once helped to make
the US the leader in electronics, computers, and
consumer devices such as telephones, TVs, and

radios in the 20th century. Now that lead has dramatically
eroded due in part to globalization but also due to the lack
of course curriculum provided by public and private schools
in the US. Electronics courses are generally not available to
secondary and high school students.

About the only exposure to electrical theory is in
Physics classes. It’s really at the college or university level
that students can study electronics if they choose. Most
students who learn electronics from an early age are either
self-taught or have parents in the electronic field that
provide assistance to them. Other resources include DIY
electronics projects published in magazines such as
Nuts & Volts and SERVO Magazine.

The VEX construction system (which is similar to the
Gilbert and Meccano erector sets) is now widely used by
both elementary and high school level students who
compete regularly in national comptetions like the VEX
Robotics Contest and FIRST. These contests have brought
together international students from Canada, China,
Mexico, Brazil, and other countries from around the world.
The VEX microcontroller provides the motor control and

also provides feedback from various sensors including
bumper switches, limit switches, sonar rangers, IR rangers,
and quadrature optical encoders for VEX-based robots. One
only has to go to the VEX forum (www.vexforum.com)
and the VEX Gallery (www.vexforum.com/gallery/
index.php) to see the hundreds of models featured. Other
independent VEX forums exist such as www.vexfan.com,
which I highly recommend since they also have many
models as examples.

The VEX microcontroller is the “silicon brain” that
makes an excellent, low cost learning platform that can be
used for carrying out both analog and digital electronic
experiments, as well as ones for science, robotics, and
animatronics (as I have tried to demonstrate in the last
three articles). It can be used with the original VEX starter
kit, the Vexplorer kit, and additional new kits that IFI now
sells. These include educational classroom bundles, along
with various robot accessories and contest props.

The VEX Keypad
Experiment

In this article, I will show you how to develop a user
interface for the VEX microcontroller using the DIY LCD

Twenty-first century scientists, engineers, mathematicians, and medical
researchers need the mathematical, analytical, problem-solving, and science
skills that can be developed by engaging in creative robotics projects and
contests in the same way that engineers of the early 20th century used
mechanical construction kits (such as the popular Gilbert Erector Set and
Meccano Erector Set) to expand their knowledge. It is no surprise that
students in high school who participated in robotics contests show dramatic
improvement in their math and science skills.

Using a
VEX Controller
VEX Robotics Design
System Projects

By Daniel Ramirez

48 SERVO 08.2010

Ramirez - Vex Experiments Part 4.qxd 6/23/2010 9:40 AM Page 48

michael
Typewritten Text
Reprinted by permission of T&L Publications, Inc

michael
Typewritten Text

display information described in my previous article (June
‘10 issue) with one additional component: an external 4 x 4
numeric keypad. I will detail how you can create your own
custom keypad using standard pushbutton switches or even
bumper switches and limit switches. I will also describe how
I developed a practical user interface written in PIC18 C
that demonstrates how you can enter the speed for a
motor and special robot commands. It may be used as a
terminal or menu-driven user interface for the VEX
controller that you can use to enter numeric data necessary
to run your applications in a portable manner, while being
unplugged from the PC or laptop, using only the VEX
microcontroller, a VEX motor, an LCD, and a keypad.

You will be pleasantly surprised that you will not need
any other external components other than the keypad, LCD,
and pin headers since the VEX controller already has pull-
ups and resistors in series to protect the digital input ports
even though the schematic shows them. The keypad works
together with an LCD display by assigning the I/O pins in
such a manner that it works as few pins as possible.

With the information presented here, you should be
able to write C applications to make menu selections using
a simple user interface so that you can select various robot
behaviors without the need for a laptop or PC. Imagine all
the VEX applications that could use a keypad as an input
device when a laptop or PC is not available. It also opens
up the VEX field to rapid prototyping machines such as
calculators, vending machines, appliances, etc.

Pushbutton and toggle switches can be used as a
convenient way to select various autonomous modes that
run with the microcontroller mounted on a robot or prop
(without having to use a PC). Pushbutton switches can also
be used for menu selections for an embedded user
interface. They can be wired to emulate a 4 x 4 keypad,
providing up to 16 independent inputs using the same
firmware provided with this article.

The pushbutton switches can be replaced with bumper
switches or limits switches which is handy to sense objects
and to check that mechanical stops or limits are not
exceeded when running in autonomous modes.

There are many kinds of switches and pushbuttons.
The normally open pushbutton (NO), normally closed
pushbutton (NC), the single pole single throw toggle switch
(SPST), the single pole double throw switch (SPDT), and
others handle low voltages and currents to high voltage
home appliance switches (120 volts AC). These switches
include momentary switches.

You should also be able to connect up to 16
pushbutton switches and scan their states using only eight
VEX I/O pins. If you think of each key as a pushbutton
switch and wire it in a similar manner to the keypad matrix,
you will be able to connect up to 16 individual pushbutton
switches and use our firmware to scan and read their states
using only eight I/O pins. Think of all the bumper switches
and limit switches that you could sense for your next robot
or prop.

FIGURE 1. Here the keypad is
connected to the VEX controller
via an eight-bit parallel bus, so that
only eight of the I/O pins are
required for the keypad (in addition
to those used for the LCD).

SERVO 08.2010 49

Ramirez - Vex Experiments Part 4.qxd 6/24/2010 9:52 AM Page 49

michael
Typewritten Text
Reprinted by permission of T&L Publications, Inc

Keen on Keypads

A keypad allows the user to enter data and commands
to an embedded controller or the data entry for the user
interface as shown in Figure 1. The keypad may also be
used to enter text and numeric data like in a calculator
application. The keypad and LCD combination makes an
excellent portable data input device so robot behavior can
be changed on the fly. The keypad is connected to the
controller using an eight-bit bus — similar to the four-bit bus
used on the LCD display.

Connecting a 4 x 4 Keypad

Connecting the keypad is very simple. The only parts
required are the keypad, some pin headers, and wire-wrap
wire as shown in the figure. Connections to other kinds of
microcontrollers usually require four 10K to 470K pull-ups
and eight 100 ohm resistors in series (or having weak pull-
ups enabled on their input pins if this feature is available).
The VEX controller has these components already
connected to it internally. Again, our keypad is connected to
the controller via an eight-bit parallel bus, so that only eight
additional I/O pins are required (for the keypad) in addition

50 SERVO 08.2010

FIGURE 2. In order
to connect the keypad and
LCD to the microcontroller
for this UI application, just
follow the wiring diagram

shown here.

VEX DIY LCD Display and Keypad
VEX CONTROLLER
ANALOG / DIGITAL

Ramirez - Vex Experiments Part 4.qxd 6/23/2010 9:42 AM Page 50

michael
Typewritten Text
Reprinted by permission of T&L Publications, Inc

to those used for the LCD as shown in Figure 2.

A VEX User Interface
Data entry can be either in decimal, floating point, or

hexadecimal format since the keypad has 16 keys. In fact,
we can edit the values by assigning the unused keys from
the keypad as a backspace, insert or delete key, cursor
position, or tab key. Our PIC18 C User Interface (UI)
application uses the keypad scan routine to scan for the
user’s keystrokes and uses the digits entered to build an
ASCII representation of the motor speed entered. We’ll
slightly alter the firmware from the June ‘10 article to work
with the keypad.

This application also uses the WPILIB routines to drive
the VEX motor to the selected speed which prevented me
from using a modified version of printf to display data since
the WPILIB could not be modified. Instead, I had to resort
to making specific function calls to position the cursor and
format the data for the LCD.

Although the example provided is very rudimentary,
the reader can build on this to develop custom user
interfaces using our source code as a starting point.

Some Assembly Required
In order to connect the keypad and LCD to the

microcontroller, just follow the wiring diagram shown in the
schematic in Figure 2. The motor is connected to motor
block, pin 1, located on the microcontroller. Please note
that two of the LCD signals (RS and E pins) have been
relocated from IO7 and IO6 to IO10 and IO11 on the

microcontroller (this is different from the schematic in the
May issue). I had to change the LCD wiring to accommodate
the keypad firmware. The 10K potentiometer controls the
contrast to the LCD and should be adjusted for ambient
lighting conditions.

Locating pin 1 on the keypad (see Figure 2), check the
orientation. If it is connected backwards, then the key scan
routine will return the values incorrectly when pressed. Care
must be taken when connecting the keypad since there are
many signals and wires used. The resistors in series with the
keypad wires are there to protect the microcontroller from
Electro-Static Discharge (ESD). Check for shorts using a

FIGURE 3. I recently found
the electronic equivalent that

makes it a snap to build a
circuit like this. The secret is to

use the jumper cables shown
here which are sold at SparkFun

in combination with standard
.100 pin headers.

TABLE 1. Bill of materials required to build the
User Interface using a keypad and LCD. One component

not shown in the schematic is a VEX motor.
I used one to demonstrate how to change the

motor speed using this interface.

ITEM QTY DESCRIPTION SOURCE

1 1 VEX Controller Innovation First, Inc.
www.vexforum.com

2 1 4 x 4 Keypad RadioShack
www.radioshack.com

3 1 16 x 2 LCD Display SparkFun
www.sparkfun.com

4 40 .100 Pin Headers Digi-Key
www.Digi-Key.com

5 1 10K ohm Trim
Potentiometer

Digi-Key
www.Digi-Key.com

6 1 Wire-wrap Cable RadioShack
www.radioshack.com

7 1 Package of
Jumper Cables

SparkFun
www.sparkfun.com

8 1 VEX Motor Innovation First, Inc.
www.vexforum.com

SERVO 08.2010 51

Ramirez - Vex Experiments Part 4.qxd 6/23/2010 9:42 AM Page 51

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text
Reprinted by permission of T&L Publications, Inc

DVM. Connections should be tested using a continuity
tester (or DVM).

Rapid Prototyping
the Keypad

I recently found something that makes it a snap to
build our circuit. The secret is to use the jumper cables
shown in Figure 3 which are available from SparkFun
(www.sparkfun.com) in combination with standard .100
pin headers. I was able to build the complete UI (including
the keypad, LCD, and motor) in less than two hours using
the parts shown in Table 1. I took my time to check the
connections against the schematic, but one problem I
encountered was that I accidently connected the wire
leading from the 10K potentiometer wiper to a ground pin
which caused smoke to come from the POT when it was
first powered up. Fortunately, I was able to disconnect
power quickly so no apparent damage was done. It is also
always a good idea to check to see if the jumper cables are
plugged into the correct pin sockets. These jumper cables
are ideal electronic rapid prototyping materials since no
soldering (other than pin headers) is required and the parts

are easily taken apart and reused. The cables include
assortments of various lengths and colors that just plug into
the I/O blocks. It is faster than wire-wrapping but not as
permanent since the jumper cables can be pulled out
(unless they are fastened with tape or hot glue). I do not
suggest using these for moving robots or props, or for
making permanent circuits. Instead, consider using wire-
wrap or point-to-point wiring for those applications. One
idea I had is to build a three-row pin header connector so
that the combined keypad and LCD modules could just be
plugged into the microcontroller for a plug-and-play
solution.

VEX Firmware
The PIC18 C example shown in Listing 1 demonstrates

how to scan the keypad for a particular key that has been
pressed by the user and then displays it on the LCD. De-
bouncing each keystroke is necessary so that repetitive key
entries are not accidently entered as valid data.

Listing 1 provides all these necessary functions. To use
it, just compile and link it using the PIC18 C tools, and then
download it with the IFI loader.

// Display each keystroke entered from the
// keypad to the LCD. Works!!!
// Clear the LCD and move the cursor to
// home position
lcd_clear();
Wait(2);

//Format the Message to be displayed on the LCD
Buffer[0] = ‘ ‘;
Buffer[1] = ‘E’;
Buffer[2] = ‘n’;
Buffer[3] = ‘t’;
Buffer[4] = ‘e’;
Buffer[5] = ‘r’;
Buffer[6] = ‘ ‘;
Buffer[7] = ‘K’;
Buffer[8] = ‘e’;
Buffer[9] = ‘y’;
Buffer[10] = ‘ ‘;
Buffer[11] = ‘(‘;
Buffer[12] = ‘0’;
Buffer[13] = ‘.’;
Buffer[14] = ‘.’;
Buffer[15] = ‘9’;
Buffer[16] = ‘)’;
Buffer[17] = ‘:’;
Buffer[18] = 0; // String terminator (null

// character)

// Position the cursor to the first line
lcd_goto(0,2);

Wait(1);

// Send message to the LCD Display
lcd_puts((char *) Buffer);

// Send message to the Serial Terminal
// if available

printf(“Enter Key (‘0’..’9’) \r\n”,
KeyValue);

//Format the Message to be displayed on the LCD
Buffer[0] = ‘ ‘;

Buffer[1] = ‘K’;
Buffer[2] = ‘e’;
Buffer[3] = ‘y’;
Buffer[4] = ‘ ‘;
Buffer[5] = ‘p’;
Buffer[6] = ‘r’;
Buffer[7] = ‘e’;
Buffer[8] = ‘s’;
Buffer[9] = ‘s’;
Buffer[10] = ‘e’;
Buffer[11] = ‘d’;
Buffer[12] = ‘ ‘;
Buffer[13] = ‘=’;
Buffer[14] = ‘ ‘;
Buffer[15] = 0; // String terminator

// (null character)

// Demo loop which reads values from keypad and
// sends them to the LCD. It Waits for press to
// indicate a keypress, then displays the key
// on the LCD Display. Note that this code
// clears the press bit when done in order to
// prepare for the next press.
while(1)
{

KeyValue = GetKey(); // Convert the key
// value from ASCII
// to binary

// Check the range of the Key Value to make
// sure is a digit between 0 and 9
if ((KeyValue >=0) && (KeyValue <=9))
{

// Position the cursor
lcd_goto(1,2);
Wait(1);

// Display formatted text to the LCD
lcd_puts((char *) Buffer);
lcd_printdec(KeyValue);

}
}

LISTING 1. The PIC18 C example shown here demonstrates how to scan the keypad for a particular key that has
been pressed by the user and then displays it on the LCD.

52 SERVO 08.2010

Ramirez - Vex Experiments Part 4.qxd 6/23/2010 9:43 AM Page 52

michael
Typewritten Text
Reprinted by permission of T&L Publications, Inc

Using the WPILIB Library

WPILib was initially developed as a framework for
programming robots used in the FIRST competition. There is
a version that also works with standard VEX
microcontrollers. This is an expanded version of the library
that is used by easyC Pro; another version is available for
PIC18 C and MPLAB. For more information on WPILib, go
to http://users.wpi.edu/~bamiller/WPILib/.

There are PIC18 C, Easy C, and Easy C Professional
functions that enable the VEX user to read digital and
analog inputs which are common to all three C compilers.
They all share the WPILIB framework that provides these

functions. In Easy C and Easy C Professional, they are
automatically included but in PIC18 C applications you need
to include the C header file API.h and specify the
WPILibVex.lib in the MPLAB project as shown in the screen
capture in Figure 4. Programming details will be clarified in
future articles with C examples, but it’s a good idea to get
familiar with the programming statements that relate to
digital and analog inputs and outputs. (I used these
functions to set the motor speed entered from the UI as
demonstrated in Listing 2.) The PIC18 C example shows
how you can change the speed of a motor and display the
current speed value on the LCD. It also shows you how to
use the WPILIB functions to set the actual motor speed.

Figure 4 shows all the necessary C modules including

// VEX User Interface (UI)
// This is a practical example that allows you
to enter the speed for a specific VEX Motor
// Display and display it on the LCD.

// Define a robot two wheels using WPILIB
TwoWheelDrive(1, 2); // This code works!!!

// Clear the LCD and move the cursor to home
// position
lcd_clear();

//Format the Message to be displayed on the LCD
Buffer[0] = ‘E’;
Buffer[1] = ‘n’;
Buffer[2] = ‘t’;
Buffer[3] = ‘e’;
Buffer[4] = ‘r’;
Buffer[5] = ‘ ‘;
Buffer[6] = ‘S’;
Buffer[7] = ‘p’;
Buffer[8] = ‘e’;
Buffer[9] = ‘e’;
Buffer[10] = ‘d’;
Buffer[11] = ‘(‘;
Buffer[12] = ‘0’;
Buffer[13] = ‘.’;
Buffer[14] = ‘.’;
Buffer[15] = ‘2’;
Buffer[16] = ‘5’;
Buffer[17] = ‘5’;
Buffer[18] = ‘)’;
Buffer[19] = ‘:’;
Buffer[20] = 0; // String terminator

// (null character)

// Position the cursor to the first line
lcd_goto(0,2);

// Send message to the LCD Display
lcd_puts((char *) Buffer);

// Send message to the Serial Terminal
// if available

printf(“Enter Speed (0..255) \r\n”,
KeyValue);

//Format the Message to be displayed on the LCD
Buffer[0] = ‘S ‘;
Buffer[1] = ‘p’;
Buffer[2] = ‘e’;
Buffer[3] = ‘e’;
Buffer[4] = ‘d’;
Buffer[5] = ‘ ‘;
Buffer[6] = ‘=’;
Buffer[7] = ‘ ‘;

Buffer[8] = 0; // String terminator
// (null character)

Speed = 0;
i = 0;
while(1)
{

KeyValue = GetKey();
// Convert the key value from
// ASCII to binary

// Check the range of the Key Value to make
// sure is a digit between 0 and 9
if ((KeyValue >=0) && (KeyValue <=9))
{

// Enter the Speed one digit at a time

if (i<3)
{

Speed += (int)KeyValue*PowerOfTen[i];
i++;

// Position the cursor
lcd_goto(1,2);

// Display formatted text to the LCD
lcd_puts((char *) Buffer);
lcd_printdec(Speed);

}
else
{

// Set the VEX Motor # 1 Speed
SetPWM (1,Speed);

// Reset digit count and Speed
i = 0;
Speed = 0;

}
}
else if (KeyValue == ENTER)
{

// Process the speed value entered
// Send the scanned key to the
// host serial terminal also

printf(“Current Motor Speed = %d \r\n”,
Speed);

// Set the VEX Motor # 1 Speed
SetPWM (1,Speed);

// Reset digit count and Speed
i = 0;
Speed = 0;

}
}

LISTING 2. This PIC18 C example shows how you can use a VEX UI to change the speed of a motor and display the
current speed value on the LCD. It also shows you how to use the WPILIB functions to set the actual motor speed.

SERVO 08.2010 53

Ramirez - Vex Experiments Part 4.qxd 6/23/2010 9:43 AM Page 53

michael
Typewritten Text
Reprinted by permission of T&L Publications, Inc

keypad.c and lcd.c that are required to implement a simple
VEX UI. These are conveniently provided as a download
from the SERVO website at www.servomagazine.com.
To test the keypad and LCD interface, you only need to
download the keypad.hex application. To customize it, you
will need to modify the code in the main function of the
WPIkeypad.c routine and re-make the project using MPLAB.
The functions used in this application include the following:

• The Get_Key function scans the keypad and returns
the keystroke that was pressed from the user after
de-bouncing it.

• The lcd_goto function positions the LCD cursor to the
specified position.

• The lcd_puts function sends the text contained in the
buffer to the LCD.

• The lcd_printdec displays numeric data to the LCD.

• The TwoWheelDrive function called from the WPILIB
initializes the microcontroller to run the VEX motors
in two wheel drive mode (2WD).

• The SetPWM function called from the WPILIB is used
to set motor #1 speed to the value entered from the
keypad.

To run the application, download the WPIKeypad.hex
file to the microcontroller using the IFI bootloader and start
entering a speed for the motor with up to three digits for a
speed value between 000 and 255. Notice that the first
digit entered is the most significant digit (unlike calculators
which enter the least significant digit first). This can easily
be modified in the WPIKeypad.c application by storing the
digits into a small buffer. The motor will start turning at the
selected speed once an extra digit between 0 and 9 is
entered from the keypad; the cycle repeats, overwriting the
current motor command.

I will be referring to more WPILIB functions in future
articles and showing you some advanced coding examples
that would be much more difficult if done without WPILIB
since controlling motors requires waveform generation
(PWM) and reading sensors may require interrupt support.
Figure 4 also shows where I added my own routines to
scan the keypad. This MPLAB project contains all the
necessary modules to compile and link the keypad
application that generates the keypad.hex file that is used
to program the controller once the keypad has been wired
to it. As a side note, I do prefer using the DDT tools instead
of WPILIB when interrupts are required (such as scanning
pushbutton switches or bumper switches since it allows
access to most of the PIC18F8520 registers, timers, and
peripherals).

Going further, an interesting experiment is to use the
keypad to enter floating point or hex numbers, and display

54 SERVO 08.2010

Ramirez - Vex Experiments Part 4.qxd 6/24/2010 9:53 AM Page 54

michael
Typewritten Text
Reprinted by permission of T&L Publications, Inc

them using the numeric LED or LCD display, or develop
custom menus for selecting various robot behaviors
while disconnected from a PC.

Until next time, when I show you how to run
stepper motors from the microcontroller. SV

FIGURE 4. The MPLAB project file shows where
I added my own routines to scan the keypad. This
contains all the necessary modules to compile and link
the keypad application that generates the keypad.hex
file that is used to program the VEX controller once
the keypad has been wired to it.

SERVO 08.2010 55

Ramirez - Vex Experiments Part 4.qxd 6/23/2010 9:44 AM Page 55

michael
Typewritten Text
Reprinted by permission of T&L Publications, Inc

	048_S
	049_S
	050_S
	051_S
	052_S
	053_S
	054_S
	055_S

