
In the discussion and hardware build-up that follows, our
collective programming and hardware design/assembly
efforts will be focused on the Microchip PIC18F2620,

which will be coded to drive a Dynamixel AX-12+ robot
actuator. There are several Dynamixel robot actuators in
addition to the AX-12+. This month, we will center
exclusively on instructing the F2620 to drive a Dynamixel

AX-12+ robot actuator. We’ve got some specialized AX-12+
hardware to design and assemble before we can begin to
code the driver firmware. So, let’s get started.

The Dynamixel AX-12+

I can easily describe the Dynamixel AX-12+ robot
actuator you see in Photo 1 with a single
word: SuperServo. The AX-12+ can do
everything a standard hobby servo can and
better. For instance, to obtain continuous
rotation you don’t have to disassemble and
intentionally “break” it. You simply com-
mand it to perform an endless turn. Need to
know where the servo shaft is? Don’t ask a
hobby servo, because unless it’s one of the
new digital models, it can’t tell you. A
Dynamixel can not only tell you where its
shaft is, it can also tell you if it’s moving.

In that you’re reading this magazine,
odds are that you have some prior exposure
to hobby servos. For those experienced
readers, you know that hobby servos move
at their own mechanical pace with a set
amount of torque. The Dynamixel can be

UNWINDING
THE AX-12+
COMMUNICATION
PROTOCOL

I love to write robotic driver
firmware and scratch build PIC
microcontroller-based robotic

hardware to run it. In this
edition of SERVO, we’re not
only going to sharpen our

driver authoring skills, we’ll
also get some flight time on

the handle of a soldering iron.

by Fred Eady

30 SERVO 04.2009

PHOTO 1. The daisy-chained one-wire RS-232
link I am referring to is actually a DATA line and
a GROUND line. The AX-12+ also distributes
power on a third daisy-chained line.

commanded to move at your selected angular velocity with
your desired amount of torque to within ±0.35° of the
desired endpoint position. The AX-12+’s maximum rated
holding torque is 229 ounce-inches and it can rotate at a
maximum angular velocity of 114 rpm. Needless to say, if
you get one of your humanoid body parts in the way of a
high-speed max-torque AX-12+ mechanical operation, it’s
gonna leave a mark.

Standard hobby servos use a variable duty cycle pulse
train to control their shaft’s angular velocity and position.
The duty cycle of the servo control pulse determines the
servo shaft’s rotational position while the angular velocity
of the servo shaft is dictated by the speed of the duty cycle
modulation. Thus, the slower the duty cycle change, the
slower the angular velocity. A pulse width of 1.0 ms will
move a standard hobby servo shaft to the extreme left,
while a 2.0 ms pulse will move the shaft to the far right.
Centering the shaft requires a pulse with a width of 1.5 ms.

When a flock of hobby servos need to be individually
positioned to achieve a common goal such as in model
aircraft and boats, each servo must have access to its
unique pulse width information. In these cases, the
unique pulse widths are multiplexed by a transmitter and
demultiplexed at the receiver. If the hobby servos aren’t in
the air or on the water, an elaborate microcontroller-based
multiple pulse width generator is normally used to control
the servo positions.

The Dynamixel robot actuators don’t depend on pulse
widths for their position information. Instead, a half-duplex,
one-wire, RS-232 protocol-based TTL communications link
transfers command and status information between a host
controller and the robot actuators. The TTL-level status and
command messages are called digital packets. The term
half-duplex means that devices attached to a common
communications link are only allowed to talk when no other
device is talking. In the case of the Dynamixel robot
actuators, all of the robot actuators that are daisy-chained
on the one-wire link spend most of their time listening and
only speak after being spoken to.

It is also possible to command the robot actuators in

the daisy chain to listen and obey only. All of the Dynamixel
robot actuators on the link are able to hear every message
that is transmitted on the wire. However, each actuator that
participates on the half-duplex one-wire TTL link is assigned
a unique address between 0 and 253 decimal. If an
actuator hears a message that does not contain its assigned
address, the message is ignored. The only way to get the
attention of every AX-12+ on the link at the same time is to
send a digital packet using the broadcast address, which is
254 decimal (0xFE).

In addition to carrying precision position and speed
information, the digital packets can also transport robot
actuator feedback data. We already know that with the
issuance of a command from the host controller, an AX-12+
can report its angular position and/or its angular velocity.
Other robot actuator parameters such as internal tempera-
ture, input voltage, and load torque can also be queried by
the host controller. The fact of the matter is, we can issue a
single READ command and gain access to all of the data
held in the AX-12+’s Control Table.

I could expound on the virtues of the AX-12+ all day.
However, you’re not here to listen to me talk. You’re here
to get the skinny on how to put an AX-12+ to work under
the control of a PIC18F2620. With that, let’s determine
what we need in a hardware way to get the PIC and an
AX-12+ to communicate with each other.

An AX-12+ Controller
Hardware Design

Behold Schematic 1. I’ve used a pair of CD4069 inverter
gates to mirror the half-duplex transmit/receive logic that is
set forth by the AX-12+ datasheet. A TTL high applied to
the MODE_SW inverter input enables U3A, the transmit
buffer, and tristates the output of U3B, the receive buffer.
Conversely, a TTL low at the MODE_SW input tristates the
transmit buffer’s output and enables the receive buffer
output of U3B. This simple circuit is the key to the
implementation of the one-wire half-duplex TTL link
required by the AX-12+. The AX-12+ datasheet presents the

SERVO 04.2009 31

NOTES:

1. POWER FOR CD4069 AND 74HC125 -- PIN 14 = +5.0 - PIN 7 = GND.

2. ALL UNUSED CD4069 INPUTS TIED TO GROUND.

3. ALL UNUSED 74HC125 OUTPUT ENABLE PINS TIED TO +5.0.

RX

TX

MODE_SW

DATA

5V0

U3B
74HC125

56

4

U3C
74HC125

9 8

1
0

U3D
74HC125

12 11

1
3R4

10K

U2A

CD4069UB

1 2

U2B

CD4069UB

3 4

U3A
74HC125

2 3

1

SCHEMATIC 1. I didn’t have
an 74HC126 part in my
inventory. So, I made do
with what I had. This
74HC125 circuit is logically
equivalent to the 74HC126
circuit shown in the AX-12+
datasheet.

circuit you see in Schematic 1 using a 74HC126. I didn’t
have a 74HC126 in my IC inventory. Being that the only
difference between the 74HC125 and the 74HC126 is the
active polarity of the tristate control inputs, I added the
inverter U2A to make the 74HC125 appear as a 74HC126

to the firmware logic. Since we’re writing our own AX-12+
driver, we could dispense with U2A and run the transmit/
receive switching logic in the reverse direction of the
AX-12+ datasheet. However, to maintain continuity with the
AX-12+ system logic, it’s best to keep with the datasheet

logic and perform the switching logic inversion
with U2A.

Schematic 2 adds the detail you need to
envision the entire one-wire interface and its
interconnection with the PIC18F2620’s I/O
subsystem. The communications link DATA portal
at pin 3 of the 74HC125 connects to the
AX-12+’s physical DATA pin, whose logical state
can be transmitted via daisy chain to other
AX-12+ DATA pins on the link. Note that the
+9.6 volt bulk motor voltage and the common
ground are also included in the daisy chain link.

32 SERVO 04.2009

MODE_SW

TX
RX

DATA

5V0

5V0

5V0

5V0

U2-PIN 14

9V6 5V0

9V6

5V0

C1
100nF

VR1
LM340S-5.0

1 2

3

IN OUT

G
N

D+ C5
470uF

+ C8
470uFC6

0.1uF

U3

74HC125

14

3
6
8
11

2
5
9

12

1
4
10
13

7

VCC

1Y
2Y
3Y
4Y

1A
2A
3A
4A

1OE
2OE
3OE
4OE

GND

C7
0.1uFC4

0.1uF

C2
100nF

U2A

CD4069UB

12

R5
330

R6
330

U2B

CD4069UB

34

J1
POWER

R3
10K

C3
100nF

U2C

CD4069UB

5 6

U2D

CD4069UB

9 8

U2E

CD4069UB

11 10

ICSP CONNECTOR

1
2
3

4
5
6

1
2
3

4
5
6

U2F

CD4069UB

13 12

R1
100

R4
10K

U1

PIC18F2620

2
3
4
5

21
22
23
24
25
26

27
28

11
12
13
14
15
16
17
18

10
9

1

6
7

8
19

20

RA0
RA1
RA2
RA3

RB0/INT0
RB1
RB2
RB3
RB4
RB5

RB6/PGC
RB7/PGD

RC0
RC1/CCP2
RC2/CCP1
RC3
RC4
RC5
RC6/TX
RC7/RX

RA6
RA7

MCLR

RA4/T0CKI
RA5

GND
GND

VDD

AX-12+ HEADER

1
2
3

R2 1K

LED1

RX

LED2

TX

SCHEMATIC 2. Transmit and receive data is
common to the DATA line as the 74HC125
active-low OE (Output Enable) lines are wired
to only allow half-duplex communications.

PHOTO 2. The circuitry for the SuperServo is
SuperSimple. So, a printed circuit board is not
necessary. I used standard point-to-point solder
techniques to wire up this AX-12+ controller design.
The three-wire interface for the AX-12+ is made up
of a portion of a SIP header strip.

Each AX-12+ attached to the common link can draw up to
900 mA. So, we need to make sure we provide a +9.6 volt
power source that is hefty enough to support every AX-12+
in the daisy chain.

If you’re wondering what happened to the
PIC18F2620’s crystal, it is not necessary in this design as we
will be coding in the internal 32 MHz clock. We can
conserve I/O pins by building up the design you see in
Schematic 2. If I/O will be plentiful in your design and you
want to eliminate the CD4069, you can. Take a look at
Schematic 3. We have simply given direct control of the
74HC125 OE (Output Enable) pins to the PIC18F2620. The
only caveat in this design is that you must make sure that
you switch the PIC18F2620’s MODE_TX and MODE_RX I/O
lines correctly in the firmware. As you can see in Photo 2,
I’ve gone with the hardware-heavy Schematic 2 design. If
you decide to go with the Schematic 3 design, we’ll code in
and comment out the necessary mode switch code in the
AX-12+ driver firmware.

The TX and RX LEDs take advantage of the PIC18F2620
EUSART’s logically high idle state. The LEDs will blink with
every passing logic low on the communications link. Thus,
you‘ll see every START bit and every binary zero in the data
stream in the lights.

There’s no rocket science in the power supply or the

TX

MODE_TX

RX

MODE_RX

DATA

9V6

5V0

5V0

5V0

5V0

9V6

5V0

5V0

LED1

RX

R6
330

U2D

CD4069UB

9 8

AX-12+ HEADER

1
2
3

U2F

CD4069UB

13 12

U1

PIC18F2620

2
3
4
5

21
22
23
24
25
26

27
28

11
12
13
14
15
16
17
18

10
9

1

6
7

8
19

20

RA0
RA1
RA2
RA3

RB0/INT0
RB1
RB2
RB3
RB4
RB5

RB6/PGC
RB7/PGD

RC0
RC1/CCP2
RC2/CCP1
RC3
RC4
RC5
RC6/TX
RC7/RX

RA6
RA7

MCLR

RA4/T0CKI
RA5

GND
GND

VDD

C6
0.1uF

C7
0.1uF

R3
10K

C1
100nF

R5
330

LED2

TX

+ C5
470uF

C3
100nF

VR1
LM340S-5.0

1 2

3

IN OUT

G
N

D

U2E

CD4069UB

11 10

U2C

CD4069UB

5 6

R4
10KU3

74HC125

14

3
6
8
11

2
5
9

12

1
4
10
13

7

VCC

1Y
2Y
3Y
4Y

1A
2A
3A
4A

1OE
2OE
3OE
4OE

GND

ICSP CONNECTOR

1
2
3

4
5
6

1
2
3

4
5
6

J1
POWER

R2 1K

R1
100

C2
100nF

+ C8
470uF

SCHEMATIC 3. Thanks to the PIC18F2620’s superb
I/O capabilities, a couple of lines of code are all it
takes to replace the CD4069UB inverter, a crystal,
and the capacitor pair supporting the crystal.

SCREENSHOT 1. I recommend adding this little utility to your
programming arsenal. Although it looks like the original site is
gone, search the web using PicMultiCalc and you’ll find archives
that will allow you to download the executable.

SERVO 04.2009 33

ICSP portal. Strip away the 74HC125 and CD4069 circuitry
and this becomes a baseline PIC design.

Driving the AX-12+ with
a PIC18F2620

The AX-12+ comes from the factory addressed as 0x01
and ready to communicate at its maximum speed of 1
Mbps. If you don’t believe the PIC18F2620’s EUSART can
run with the big dogs at 1 Mbps, swing your eyes over to
Screenshot 1. The math is courtesy of PicMultiCalc. This PIC
utility runs on a PC and is the brainchild of Mister E
Engineering. The absence of the PicMultiCalc download on
the Mister E website seems to indicate that Mister E is out
of the country at the moment. However, I did find a down-
loadable copy of the utility in the microEngineering Labs

PICBASIC forum. Here’s what our EUSART initialization code
looks like after incorporating the PicMultiCalc numbers:

//***
//* Init EUSART Function
//***
void init_EUSART(void)
{

SPBRG = 7; //7 = 1 Mbps with 32MHZ clock
//SPBRG = 68; //68 = 115200 bps with 32MHZ clock
TRISC7 = 1; //receive pin
TRISC6 = 0; //transmit pin
BRG16 = 1;
TXSTA = 0x04; //high speed baud rate set BRGH = 1
RCSTA = 0x80; //enable serial port and pins
EUSART_RxTail = 0x00; //flush Rx buffer: Head=Tail
EUSART_RxHead = 0x00;
EUSART_TxTail = 0x00; //flush Tx buffer: Head = Tail
EUSART_TxHead = 0x00;
RCIP = 1; //receive interrupt = high priority
TXIP = 1; //transmit interrupt = high priority
RCIE = 1; //enable receive interrupt
PEIE = 1; //enable all unmasked peripheral irqs
GIE = 1; //enable all unmasked interrupts
CREN = 1; //enable EUSART1 receiver
TXIE = 0; //disable EUSART1 transmit interrupt
TXEN = 1; //transmitter enabled

}

Note that I added a commented-out SPBRG statement
for 115200 bps. The reasoning behind this is that I
initially tested the AX-12+ driver at 115200 thinking that
1 Mbps was not a realistic baud rate for the PIC18F2620.
If you want to experiment with other baud rates, you’ll
need to preload the out-of-the-box AX-12+ with your
desired baud rate. The easiest way to do this is to use a
Robotis USB2Dynamixel dongle like the one smiling at you
in Photo 3.

The USB2Dynamixel is based on the FTDI FT232R USB
UART IC. With the flick of a slide switch, the
USB2Dynamixel can transform a PC’s USB data stream into
RS-232, RS-485, or TTL voltage levels suitable for use with
the full Dynamixel robot actuator line. The USB2Dynamixel
is not designed to drive the robot actuator electronics and
motor, which means that we have to supply the bulk motor

voltage if we wish to exercise the AX-12+
using the USB2Dynamixel. The
USB2Dynamixel is supported by a
number of PC-based control and test
programs, which can be downloaded
from the Robotis website.

The AX-12+-USB2Dynamixel
hardware hookup was simple. I
crimped a pair of Molex female
terminals (Molex part number

PHOTO 3. If you’ve been keeping up with my RS-232 to USB
conversion projects in Nuts & Volts, you already know quite a
bit about what’s going on inside of the USB2Dynamixel. The
USB2Dynamixel is designed around the FTDI FT232R USB UART IC.

SCREENSHOT 2. Exploring the functionality of this software
tool with a USB2Dynamixel and AX-12+ attached to your
PC’s USB port is a quick and easy way to get acquainted with
the Dynamixel robot actuator system.

34 SERVO 04.2009

16-02-1125) onto the opposite end of a couple of wires
that I ultimately connected to a +9.6 volt power source. The
AX-12+ comes with a three-wire jumper that I used to con-
nect it to the USB2Dynamixel. I plugged the USB2Dynamixel
into my laptop serial port, powered up the +9.6 volt supply,
and kicked off the Dynamixel Manager application.
As you can see in Screenshot 2 — with the help of the
USB2Dynamixel and a home-made power cable — I used the
Network portion of the Dynamixel Manager to preload the
115200 baud rate into the AX-12+. Naturally, I used the
same process to return the AX-12+ to its original 1 Mbps
baud setting. We don’t need to run the PIC18F2620’s
internal oscillator at full blast to pump 1 Mbps out of its
EUSART. According to PicMultiCalc, we can run with an
8 MHz clock and still achieve 1 Mbps throughput at the
EUSART. Let’s settle on running at full blast, which is
32 MHz. The clock coding for 32 MHz goes like this:

//***
//* INITIALIZE CLOCK AND I/O PORTS
//***

OSCCON = 0x70; //set for 32 MHz operation
PLLEN = 1; //enable PLL for 32 MHz
TRISA = 0b01111111;
TRISB = 0b11111111;
TRISC = 0b10000000;

All of the I/O that relates to the AX-12+ is currently
taking place on PORT C of the PIC18F2620. To get things
moving as quickly as possible, I like to set the I/O port
directions as soon as I can in the code.

To send a digital packet, we must know how the data
is laid out within each packet. So, let’s look at a digital
packet from the viewpoint of a programmer using the
C programming language. We’ll stash our digital packets
into a 128-byte array called xmit_buff until we’re ready to
send them.

Every digital packet begins with a pair of 0xFF sync
characters:

xmit_buff[0] = 0xFF; //sync character
xmit_buff[1] = 0xFF; //sync character

Since our EUSART firmware engine uses circular buffers
to hold its transmit and receive data, the pair of 0xFF sync
characters will always stand as digital packet demarcation
points. The byte that immediately follows the sync characters
is the AX-12+ ID, which ranges from 0 to 253 decimal
(0x00 to 0xFE). There will never be a trio of consecutive
0xFF characters as the ID can never be greater than 0xFE.
So, we’re still safe triggering on a pair of 0xFF characters to
denote the beginning bytes of a digital packet. Here’s what
our digital packet looks like so far:

xmit_buff[0] = 0xFF; //sync character
xmit_buff[1] = 0xFF; //sync character
xmit_buff[2] = id; //unique ID 0-253

The next byte in a digital packet holds a number
representing the length of the digital packet, which is
computed as the Number of Parameters + 2:

xmit_buff[0] = 0xFF; //sync character
xmit_buff[1] = 0xFF; //sync character
xmit_buff[2] = id; //unique ID
xmit_buff[3] = parm_len + 2; //PARMS+INSTR+CHECKSUM

The additional two bytes added to the parameter
length include the instruction and the digital packet
checksum value in the packet length calculation. The
parameters — if there are any — are squeezed in between
the instruction and checksum bytes:

xmit_buff[0] = 0xFF; //sync character
xmit_buff[1] = 0xFF; //sync character
xmit_buff[2] = id; //unique ID
xmit_buff[3] = parm_len + 2; //PARMS-INSTR-CHECKSUM
xmit_buff[4] = inst; //instruction
xmit_buff[p] = parms[0],parms[1] //any number of params
xmit_buff[c] = packet checksum //packet checksum byte

Here’s how we define the seven AX-12+ instructions in
our firmware:

//***
//* INSTRUCTIONS
//***
#define iPING 0x01 //obtain a status packet
#define iREAD_DATA 0x02 //read Control Table values
#define iWRITE_DATA 0x03 //write Control Table values
#define iREG_WRITE 0x04 //write and wait for ACTION
#define iACTION 0x05 //triggers REG_WRITE
#define iRESET 0x06 //set factory defaults
#define iSYNC_WRITE 0x83 //control mult. actuators

The instruction parameters are kept in their own
128-byte array, which we call parms. Let’s dry-run some
example digital packets to show you how the parms array
works with the xmit_buff array. We’ll begin with building a
PING digital packet, which has no parameters. The AX-12+
ID will be 0x01 in all of our examples:

//PING DIGITAL PACKET
xmit_buff[0] = 0xFF; //sync character
xmit_buff[1] = 0xFF; //sync character
xmit_buff[2] = 0x01; //unique ID
xmit_buff[3] = 0x02; //number of PARMS+

//INSTRUCTION+CHECKSUM
xmit_buff[4] = iPING; //instruction
xmit_buff[5] = 0xFB; //checksum

The only byte you probably can’t figure out right now is
held in xmit_buff[5]. The digital packet checksum is simply
the bitwise inversion (logical NOT) of the sum of the ID
byte, length byte, parameter bytes, and instruction byte.

SERVO 04.2009 35

Any bits that roll out of the checksum’s least significant
byte are ignored.

Let’s dry-run with an instruction that requires some
parameters. Let’s manually code up a READ_DATA digital
packet that will retrieve the AX-12+’s ID from the Control
Table. The Control Table is simply a chunk of EEPROM and
RAM that holds the AX-12+’s configuration and feedback
data. The first 23 Control Table entries are nonvolatile.
There are 49 Control Table memory slots:

//***
//* CONTROL TABLE ADDRESSES
//***
enum{

MODEL_NUMBER_L, // 0x00
MODEL_NUMBER_H, // 0x01
VERSION, // 0x02
ID, // 0x03
BAUD_RATE, // 0x04
RETURN_DELAY_TIME, // 0x05
CW_ANGLE_LIMIT_L, // 0x06
CW_ANGLE_LIMIT_H, // 0x07
CCW_ANGLE_LIMIT_L, // 0x08
CCW_ANGLE_LIMIT_H, // 0x09
RESERVED1, // 0x0A
LIMIT_TEMPERATURE, // 0x0B
DOWN_LIMIT_VOLTAGE, // 0x0C
UP_LIMIT_VOLTAGE, // 0x0D
MAX_TORQUE_L, // 0x0E
MAX_TORQUE_H, // 0x0F
STATUS_RETURN_LEVEL, // 0x10
ALARM_LED, // 0x11

ALARM_SHUTDOWN, // 0x12
RESERVED2, // 0x13
DOWN_CALIBRATION_L, // 0x14
DOWN_CALIBRATION_H, // 0x15
UP_CALIBRATION_L, // 0x16
UP_CALIBRATION_H, // 0x17
TORQUE_ENABLE, // 0x18
LED, // 0x19
CW_COMPLIANCE_MARGIN, // 0x1A
CCW_COMPLIANCE_MARGIN, // 0x1B
CW_COMPLIANCE_SLOPE, // 0x1C
CCW_COMPLIANCE_SLOPE, // 0x1D
GOAL_POSITION_L, // 0x1E
GOAL_POSITION_H, // 0x1F
MOVING_SPEED_L, // 0x20
MOVING_SPEED_H, // 0x21
TORQUE_LIMIT_L, // 0x22
TORQUE_LIMIT_H, // 0x23
PRESENT_POSITION_L, // 0x24
PRESENT_POSITION_H, // 0x25
PRESENT_SPEED_L, // 0x26
PRESENT_SPEED_H, // 0x27
PRESENT_LOAD_L, // 0x28
PRESENT_LOAD_H, // 0x29
PRESENT_VOLTAGE, // 0x2A
PRESENT_TEMPERATURE, // 0x2B
REGISTERED_INSTRUCTION, // 0x2C
RESERVE3, // 0x2D
MOVING, // 0x2E
LOCK, // 0x2F
PUNCH_L, // 0x30
PUNCH_H // 0x31

};

To access the AX-12+ ID byte, we need to build a
READ_DATA digital packet to retrieve the fourth Control
Table byte. Since the READ_DATA instruction requires
parameters, the first step involves defining the parameter
table in the parms array:

parms[0] = ID; //starting read address
parms[1] = 0x01;//number of bytes to read from

// starting read address

Later on, we will write a function to load the parm

SCREENSHOT 3. This is a capture of the PIC18F2620’s EUSART
receive buffer. A value of 0x00 in the ERROR byte is a very
good thing as bits that are set indicate errors.

SCREENSHOT 4. The payload data (AX-12+ ID) is loaded at
offset 6 in the EUSART’s receive buffer.

36 SERVO 04.2009

• ROBOTIS — www.robotis.com
USB2Dynamixel; AX-12+ Robot Actuator; Dynamixel
Manager

• Microchip — www.microchip.com
PIC18F2620; MPLAB IDE; MPLAB REAL ICE

• HI-TECH Software — www.htsoft.com
HI-TECH PICC-18 C Compiler

The AX-12+ firmware driver was compiled with HI-TECH
PICC-18 PRO.

A Microchip MPLAB REAL ICE was used as the debugging
device.

Sources

http://www.htsoft.com
http://www.microchip.com
http://www.robotis.com

array entries into the correct memory slots of a digital
packet. However, for now, let’s insert the parameters
manually:

//READ ID DIGITAL PACKET
xmit_buff[0] = 0xFF; //sync character
xmit_buff[1] = 0xFF; //sync character
xmit_buff[2] = 0x01; //unique ID
xmit_buff[3] = 0x04; //# of PARMS+INSTRUCTION+CHECKSUM
xmit_buff[4] = iREAD_DATA; //instruction
xmit_buff[5] = ID; //parameter 1
xmit_buff[6] = 0x01; //parameter 2
xmit_buff[7] = 0xF4; //checksum

Both of the digital packets we assembled will trigger
a response from the AX-12+. In the case of the PING
digital packet, we should receive a status message
containing the AX-12+’s ID, an ERROR byte, and a
checksum byte. If the PING operation is successful, here’s
what a returned status digital packet looks like from a
programmer’s point of view:

xmit_buff[0] = 0xFF; //sync character
xmit_buff[1] = 0xFF; //sync character
xmit_buff[2] = 0x01; //payload value = ID of AX-12+
xmit_buff[3] = 0x02; //# of PARMS+INSTRUCTION+CHECKSUM
xmit_buff[4] = 0x00; //error byte – 0x00 = none
xmit_buff[5] = 0xFC; //checksum

This status message contents are confirmed in
Screenshot 3, which is the PING response data I received
from an AX-12+ with an ID of 0x01. I also took the liberty
to capture the response for the READ_DATA digital packet
in Screenshot 4. Here’s the programmer view of the status
message data captured in Screenshot 4:

xmit_buff[0] = 0xFF; //sync character
xmit_buff[1] = 0xFF; //sync character
xmit_buff[2] = 0x01; //unique ID
xmit_buff[3] = 0x03; //# of PARMS+INSTRUCTION+CHECKSUM
xmit_buff[4] = 0x00; //ERROR byte – no errors
xmit_buff[5] = 0x01; //parameter 1
xmit_buff[6] = 0xFA; //checksum

More To Come
I think you’ve got the idea. So, next time we’ll add some

meat to our firmware potatoes and code up a number of
functions that will give us dominion over the AX-12+ Dynamixel
robot actuator. In the meantime, I’ll post the preliminary
AX-12+ PIC18F2620 firmware I used here to communicate
with an AX-12+ as a download package on the SERVO
website (www.servomagazine.com). Be sure to have your
AX-12+ controller hardware ready to roll as next time we’re
going to concentrate on the firmware. SV

SERVO 04.2009 37

Fred Eady can be reached via email at fred@edtp.com

http://www.servomagazine.com

