
62 SERVO 10.2011

In this second and final article, we will demonstrate a
more complex and useful digital design that will use
the Basys2 FPGA trainer to control a scrolling message

on an 8 x 8 LED matrix display; see Photo 1. You will need
to use four of the Digilent expansion cables and all of the
16 available FPGA expansion pins to make this circuit
operate. The 8 x 8 LED matrix that is used is a Kingbright

part number TC15-11SRWA 1.5” dot matrix display from
www.kingbrightusa.com for $4.76. When you look up
the Kingbright matrix, you’ll notice that the top surface is
not red like in Photo 1. If you cover the surface with red
tail light repair tape, your letters appear brighter.

A complete schematic diagram is shown in Figure 1.
The cathodes of the LEDs in the matrix are connected to
the column pins which are then taken to ground through
eight 2N7000 FETs. Notice that no resistors are required
when using these FETs in the manner shown here. The
gates of the FETs are connected to the eight column
outputs from the Basys2 expansion connectors. Only one of
these FETs will ever be on at one time because a ring
counter will be used to sequentially scan through them one
at a time over and over again at a fast rate, giving the
illusion that all of the LED columns are lit at the same time.
In reality, a maximum of eight LEDs will ever be on at the
same time. Each FET will conduct (at the most) 80 mA at
one time; eight LEDs x 10 mA each = 80 mA. According to
the datasheets they are capable of conducting 200 mA.

The anodes of the LEDs are connected to the row pins
on the matrix. The rows will be driven by eight FPGA pins
from the Basys2 expansion connectors in series with eight
150 ohm resistors. These eight resistors are necessary to
limit the current from each FPGA row pin to 10 mA. The
LEDs drop 1.8V when conducting 10 mA. Therefore, 3.3V
(a LVTTL logic “1”) – 1.8V = 1.5V and 1.5V / 10 mA = 150
ohms of resistance. The FPGA pins can be configured in the
UCF file to drive 16 mA. There will not be any problems
driving the 64 LEDs in the matrix with the FPGA unless you

In the first article about FPGAs, the reader was introduced to the Digilent Basys2
FPGA trainer and the Xilinx XC3S100E 100K gate FPGA in a 132-pin surface-
mount package. The reader was shown how to enter a simple two input AND
gate in VHDL, compile the listing, generate a configuration bit file, and
download that bit file into the FPGA and test it.

Getting
Started With
FPGAs —
Part 2
by David Ward

PHOTO 1

Ward - FPGAs - Part 2.qxd 9/2/2011 9:37 AM Page 62

http://www.kingbrightusa.com

attempt to energize more than one column at a time.
Now, let’s step through the VHDL and UCF listings line

by line and explain what is occurring; see Listings 1 and 2.
By the way, this code displays the message “A,” “B,” “C,”
and a blank as it scrolls from the right side of the matrix
over to the left. The code has been commented here and
there to help the reader see what is being done. Comments
in VHDL are made by typing in two dashes (“—“) and then
your comments. Comments are not compiled; they are
ignored by the Xilinx compiler. So, it won’t be necessary to
elaborate on the comment lines such as lines 1 through 3.

Lines 5 through 9 are the “Entity” section of the VHDL
code listing. This is where ports or actual input and output
signals are defined. Line 6 defines an input line named “clk”
which is a single bit. The UCF file will direct this to pin B8
of the FPGA where the Basys2 is connected to a 50 MHz
clock signal; see line 1 of the UCF file in Listing 2. Line 7

defines an eight-bit output port named DISPLAY_C<0>
through DISPLAY_C<7>. These are the eight bits that will
go out to the columns of the LED matrix. Their locations are
defined in lines 3 through 10 of the UCF listing. Line 8
defines an eight-bit output port named DISPLAY_R<0>
through DISPLAY_R<7>. These are the eight bits that will go
out to the rows of the LED matrix. Their locations are
defined on lines 12 through 19 of the UCF listing. Line 9
marks the end of the Entity section.

Lines 12 through line 56 are the “Architecture” section
of the VHDL code listing. This is where the logical behavior
of the circuit is defined. Lines 14 though 16 set up a signal
named ABC that is 256 bits wide. It is initialized with the
ones and zeros to display A, B, and C with a final blank screen.
Line 17 sets up a signal called low_clk. This signal will be a
lower frequency signal derived from the higher 50 MHz
signal coming into the clk pin. Line 18 sets up a signal called

FIGURE 1

SERVO 10.2011 63

www.servomagazine.com/index.php?/magazine/article/october2011_Ward

Ward - FPGAs - Part 2.qxd 9/2/2011 9:38 AM Page 63

http://www.servomagazine.com/index.php?/magazine/article/october2011_Ward

64 SERVO 10.2011

ringcounter which is eight bits wide and is initialized to
“00000001.” This signal will be constantly rotated left by one
bit to drive the column scanning. Line 20 marks the beginning
of the Architecture section after the signals have been defined.

Line 23 is the label for a process named “clk.” A
process operates sequentially in the FPGA instead of in a
parallel manner. Line 24 defines two integer variables to be
used in the process: inc and inc_2. They are both initialized
to a value of zero. The first one, inc, will be incremented on
every positive going transition of the 50 MHz clock. The
second one, inc_2, will be incremented off of the low_clk
signal to control the scrolling of the letters across the
matrix. Line 25 marks the beginning of the clk process.

Lines 26 through 39 are four nested IF, THEN, ELSE
statements. Line 26 will increment inc by one on every
positive going transition (PGT) of the 50 MHz clock; this will
occur every 20 nS. Lines 27 and 28 determine that if inc
has gotten up to 25,000 or that 500 µS have elapsed, then
toggle the low_clk signal. That is, if low_clk was previously
a 1, then make it a 0. If it was a 0, then make it a 1. Line
29 increments inc_2 by one every time low_clk is toggled.

Line 30 determines that if inc_2 has gotten up to 125,

then reset inc_2 back to zero. Then, on line 31, rotate the
256-bit signal ABC left by eight places. Line 32 determines
if inc_2 has not reached 125 yet, then don’t rotate ABC left
eight places; leave it as it was.

Line 33 is the END IF for line 30. Line 34 is the Else for
line 28 for toggling the low_clk signal. Line 35 rotates the
ringcounter left by one place; this is for scanning the
columns. Line 36 is the END IF for line 28. Line 37 resets
the inc counter back to zero. Line 38 is the END IF for line
27. Line 39 is the END IF for line 26.

Line 41 is where the signal ringcounter is actually sent
out to the eight pins of DISPLAY_C<0> through DISPLAY_C<7>
which is where the matrix column scanning takes place.

Lines 43 through 53 are a CASE structure. The CASE
structure will only find one of the lines from line 44
through 51 true at a time. Since the CASE structure is
comparing to ringcounter to determine which line to
execute, it will step sequentially through them from line 44
then on to line 45, etc., until reaching line 51. Since
ringcounter is rotated every 1 mS, then the CASE structure
will step through its eight choices every 8 mS. When the
CASE structure finds a match — such as in line 44 when

—Basys2_ABC by David A. Ward May 2011
—Displays ABC, this uses 64 bits per letter data
—and scrolls R to L
—clk info: 50MHZ = 20nS period applied to FPGA
—pin B8

entity Basys2_ABC is
PORT (clk : IN bit;
—50MHZ clock coming in to pin B8
DISPLAY_C : OUT bit_vector (0 TO 7);
—8 column outputs to ground cathodes
DISPLAY_R : OUT bit_vector(0 TO 7));
—8 row outputs to source LED anodes

end Basys2_ABC;

—display info is 64 bits from row1 col1 down, every
—8 bits is one column of data
architecture Behavioral of Basys2_ABC is
—256 bits, 64 bits per full display, 4 displays;
—A, B, C, and a blank

SIGNAL ABC : bit_vector(255 DOWNTO 0) :=

“00000000011111101001000010010000100100000111111000
000000000000000000000011111110100100101001001010010
010011011000000000000000000000000000111110010000010
100000101000001001000100000000000000000000000000000
000
00”;

SIGNAL low_clk : bit;
—reduced frequency clock
SIGNAL ringcounter : bit_vector(7 DOWNTO 0)
:= “00000001”;
—init ring counter

BEGIN

—clock divider portion to reduce the F of the 50MHZ
—clock down

PROCESS (clk)
VARIABLE inc, inc_2 : integer := 0;
—counter variable initialized to 0
BEGIN
IF(clk’EVENT AND clk = ‘1’) THEN
inc
:= inc + 1; —increment on PGT
IF(inc = 25000) THEN —toggle the
low_clk 25,000 X 20nS = 500uS

IF(low_clk = ‘1’) THEN low_clk <=
‘0’; —toggle reduced clock signal

inc_2 := inc_2 +1; —increment
scroll counter
IF(inc_2 = 125) THEN inc_2
:=
0; —reset counter

ABC <= ABC rol 8; —time
to scroll, rotate data 8
bits left
ELSE ABC <= ABC; —not
time to scroll, use past
data

END IF;
ELSE low_clk <= ‘1’;
ringcounter <=
ringcounter rol 1;
—rotate ring counter

END IF;
inc := 0; —clear count

END IF;
END IF;

DISPLAY_C <= ringcounter;
—8 lines used to energize 8 FET’s

CASE ringcounter IS
—output letter data depending on switch settings

WHEN “00000001” => DISPLAY_R <= ABC(255
DOWNTO 248); —column 1

WHEN “00000010” => DISPLAY_R <= ABC(247
DOWNTO 240);

WHEN “00000100” => DISPLAY_R <= ABC(239
DOWNTO 232);

WHEN “00001000” => DISPLAY_R <=
ABC(231 DOWNTO 224);

WHEN “00010000” => DISPLAY_R <= ABC(223
DOWNTO 216);

WHEN “00100000” => DISPLAY_R <= ABC(215
DOWNTO 208);

WHEN “01000000” => DISPLAY_R <= ABC(207
DOWNTO 200);

WHEN “10000000” => DISPLAY_R <= ABC(199
DOWNTO 192); —column 8

WHEN OTHERS => DISPLAY_R <= “00000000”;
END CASE;

END PROCESS;
end Behavioral;

LISTING 1

Ward - FPGAs - Part 2.qxd 9/2/2011 9:38 AM Page 64

ringcounter = “00000001” —
then it will send out the
upper eight bits of ABC to
DISPLAY_R<0> through
DISPLAY_R<7>. This is where
the eight LEDs on the eight
rows are energized at the
anodes and the FET from
column 1 is turned on to
ground all of the cathodes
from column 1. So, the CASE
structure is where the data
actually gets out to the
matrix. As the CASE structure
cycles through the eight
ringcounter values, it will display an entire 8 x 8 image.

This happens so rapidly that the human eye cannot see
it is actually scanning across the matrix and only lighting a
maximum of eight LEDs at any one time. If the 256-bit
signal ABC is rotated left by eight bits or one column every
so often, then you can see the letters slowly scroll across
the matrix from right to left. Lines 54 and 56 mark the end
of the process and the Architecture sections.

If you look at the UCF listing, you’ll see that it does
several other things than just locate or
“LOC” signals from the VHDL listing with
the physical FPGA pins. The UCF also sets
the IOSTANDARD to LVTTL. There are over
20 I/O standards available in this FPGA.
The LVTTL stands for low voltage TTL,
which means that a logic “1” is not 5.0V
but 3.3V. The slew rate or the speed at
which the signals transition from a 1 to a
0 and vice versa are set to FAST. They
can also be set to SLOW if the receiving
devices require it. Finally, the DRIVE is set
to 16 mA. The drive can be set as low as
2 mA and a maximum of 16 mA.

You will probably want to make up
your own messages since watching
“ABC” slowly scrolling across isn’t very
exciting. By the way, entering all 256 of
your 1s and 0s for your message isn’t
too convenient, but it makes the VHDL
listing shorter and easier to follow.
Figure 2 shows you how the data is
generated for the letters so you can
develop your own messages. A blank
form is included in the article downloads.

An easier way to generate your
messages is to develop them column by
column in Notepad and then cut and paste
them into your code; see Listing 3. If you
want a longer message, the only thing
that needs to be changed is to paste your
extra letters into the end of the data at line
16 and then increase the number (XXX)

in line 14 by 64 for each additional character, SIGNAL ABC:
BIT_VECTOR (XXX DOWNTO 0). Of course, if you don’t change
the numbers in the CASE section (lines 43 through 53), the
message will start somewhere in the middle during the first
pass through, but it will appear correct after one pass.

Hopefully, you’ve enjoyed these articles on FPGAs and it
has given you a starting point to learn more about them and
VHDL. Again, a good tutorial for VHDL is “The Low-Carb
VHDL Tutorial” by Bryan Mealy available on the Internet. SV

8 X8 LED MATRIX FOR LETTER "A"

C
o

lu
m

n
 1

C
o

lu
m

n
 2

C
o

lu
m

n
 3

C
o

lu
m

n
 4

C
o

lu
m

n
 5

C
o

lu
m

n
 6

C
o

lu
m

n
 7

C
o

lu
m

n
 8

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

Row 1 * Row 1 data 0 0 0 0 0 0 0 0

Row 2 * * Row 2 data 0 0 1 1 1 1 1 0

Row 3 * * Row 3 data 0 1 0 1 0 0 0 0

Row 4 * * * * * Row 4 data 1 0 0 1 0 0 0 0

Row 5 * * Row 5 data 0 1 0 1 0 0 0 0

Row 6 * * Row 6 data 0 0 1 1 1 1 1 0

Row 7 * * Row 7 data 0 0 0 0 0 0 0 0

Row 8 Row 8 data 0 0 0 0 0 0 0 0

"B"

C
o

lu
m

n
 1

C
o

lu
m

n
 2

C
o

lu
m

n
 3

C
o

lu
m

n
 4

C
o

lu
m

n
 5

C
o

lu
m

n
 6

C
o

lu
m

n
 7

C
o

lu
m

n
 8

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

Row 1 * * * * Row 1 data 0 0 0 0 0 0 0 0

Row 2 * * Row 2 data 1 1 1 1 1 1 1 0

Row 3 * * Row 3 data 1 0 0 1 0 0 1 0

Row 4 * * * * * Row 4 data 1 0 0 1 0 0 1 0

Row 5 * * Row 5 data 1 0 0 1 0 0 1 0

Row 6 * * Row 6 data 0 1 1 1 1 1 0 0

Row 7 * * * * Row 7 data 0 0 0 0 0 0 0 0

Row 8 Row 8 data 0 0 0 0 0 0 0 0

"C"

C
o

lu
m

n
 1

C
o

lu
m

n
 2

C
o

lu
m

n
 3

C
o

lu
m

n
 4

C
o

lu
m

n
 5

C
o

lu
m

n
 6

C
o

lu
m

n
 7

C
o

lu
m

n
 8

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

Row 1 * * * Row 1 data 0 0 0 0 0 0 0 0

Row 2 * * Row 2 data 0 1 1 1 1 1 0 0

Row 3 * Row 3 data 1 0 0 0 0 0 1 0

Row 4 * Row 4 data 1 0 0 0 0 0 1 0

Row 5 * Row 5 data 1 0 0 0 0 0 1 0

Row 6 * * Row 6 data 0 1 0 0 0 1 0 0

Row 7 * * * Row 7 data 0 0 0 0 0 0 0 0

Row 8 Row 8 data 0 0 0 0 0 0 0 0

FIGURE 2

NET “clk” LOC = B8;

NET “DISPLAY_C<0>” LOC = B7 | IOSTANDARD = LVTTL | SLEW = FAST | DRIVE = 16;
NET “DISPLAY_C<1>” LOC = C5 | IOSTANDARD = LVTTL | SLEW = FAST | DRIVE = 16;
NET “DISPLAY_C<2>” LOC = B6 | IOSTANDARD = LVTTL | SLEW = FAST | DRIVE = 16;
NET “DISPLAY_C<3>” LOC = C6 | IOSTANDARD = LVTTL | SLEW = FAST | DRIVE = 16;
NET “DISPLAY_C<4>” LOC = B5 | IOSTANDARD = LVTTL | SLEW = FAST | DRIVE = 16;
NET “DISPLAY_C<5>” LOC = J3 | IOSTANDARD = LVTTL | SLEW = FAST | DRIVE = 16;
NET “DISPLAY_C<6>” LOC = A3 | IOSTANDARD = LVTTL | SLEW = FAST | DRIVE = 16;
NET “DISPLAY_C<7>” LOC = B2 | IOSTANDARD = LVTTL | SLEW = FAST | DRIVE = 16;

NET “DISPLAY_R<0>” LOC = A9 | IOSTANDARD = LVTTL | SLEW = FAST | DRIVE = 16;
NET “DISPLAY_R<1>” LOC = A10 | IOSTANDARD = LVTTL | SLEW = FAST | DRIVE = 16;
NET “DISPLAY_R<2>” LOC = D12 | IOSTANDARD = LVTTL | SLEW = FAST | DRIVE = 16;
NET “DISPLAY_R<3>” LOC = B9 | IOSTANDARD = LVTTL | SLEW = FAST | DRIVE = 16;
NET “DISPLAY_R<4>” LOC = C9 | IOSTANDARD = LVTTL | SLEW = FAST | DRIVE = 16;
NET “DISPLAY_R<5>” LOC = C13 | IOSTANDARD = LVTTL | SLEW = FAST | DRIVE = 16;
NET “DISPLAY_R<6>” LOC = C12 | IOSTANDARD = LVTTL | SLEW = FAST | DRIVE = 16;
NET “DISPLAY_R<7>” LOC = A13 | IOSTANDARD = LVTTL | SLEW = FAST | DRIVE = 16;

LISTING 2

A
00000000
01111110
10010000
10010000
10010000
01111110

00000000
00000000

B
00000000
11111110
10010010
10010010
10010010
01111100

00000000
00000000

C
00000000
01111100
10000010
10000010
10000010
01000100
00000000
00000000

LISTING 3

SERVO 10.2011 65

Ward - FPGAs - Part 2.qxd 9/2/2011 9:38 AM Page 65

