
If you scan the pages of SERVO carefully, you’ll come
across a company called MaxBotix. They produce a line
of ultrasonic ranging devices that take the hassle out of

implementing a viable ultrasonic ranging application. Each
of MaxBotix’s LV-MaxSonar rangefinders has a differing
beam pattern that results in a unique detection pattern.
This allows you — the ultrasonic ranging system designer —
to pick an LV-MaxSonar that is right for your application.

Ultrasonic rangefinders with wide beam widths
are better suited for “eye” applications. An eye application

may need to detect obstacles, avoid collisions, or sense
the presence of a humanoid. Wide beams also are very
good at detecting small objects due to their higher
sensitivity.

MaxBotix offers LV-MaxSonar ultrasonic rangefinders
that produce a narrow beam. These narrow beam
rangefinders are good for ranging and room mapping. A
narrow beam LV-MaxSonar rangefinder will do a better job
at operating in cluttered and “high noise” environments as
its beam is a bit less sensitive in the center. However, you
can use a narrow beam ultrasonic rangefinder to do the
work of a wide beam ultrasonic rangefinder if that’s what is
right for your application.

The LV-MaxSonar ultrasonic rangefinder line is
composed of five models. As you can see in Figure 1, the
EZ0 is the wide beam ultrasonic rangefinder model and is
the most sensitive. The EZ1 emits a narrower beam than
the EZ0, which makes it more suitable for sensing humans.
The MaxBotix LV-MaxSonar-EZ2 produces a beam that is
even narrower than the EZ1. The beam width narrows

progressively from

Building a Sonar SystemBuilding a Sonar System

42 SERVO 06.2008

by Fred Eady

Detection pattern
to a 1/8 inch
diameter dowel.

EZ0™ EZ1™ EZ2™ EZ3™ EZ4™

5V
3.3V

Detection pattern
to a 1/4 inch
diameter dowel.

Detection pattern
to a 1 inch
diameter dowel.

Detection pattern
to a 3 1/4 inch
diameter dowel.

V+ supply voltage,
(Distances overlaid on a 1 foot grid.)

LV-MaxSonar®-EZ
beam patterns

I’ve always wanted to do an
ultrasonic ranging project. So,
guess what we’ll be talking about
and building up this month?
Ultrasonic ranging is a great way
to add eyes to your mechanical
animal. I’ll bet you didn’t realize
that there is an off-the-shelf
ultrasonic ranging product out
there that allows you to tune
those “electromechanical eyes”
to your robot’s environment.

FIGURE 1. This illustration makes it easy to comprehend
the differing detection patterns of the line of MaxBotix
LV-MaxSonar ultrasonic sensors. The really cool thing is that
all of the LV-MaxSonar sensors have the same ranging data
interface. This set of lobe shots demonstrates the ranging of
various diameter dowels on a one foot grid.

PHOTO 1. The LV-
MaxSonar-EZ0 you see
here is a combination
of the MaxBotix
MaxSonar-UT ultrasonic
transducer and the
proprietary circuitry
you see in Schematic 1.
Another reason for not
getting too deep with
the inner workings of
the EZ0 is that there
is no technical
information available
from MaxBotix for the
ultrasonic transducer.

the LV-MaxSonar-EZ0 through to the LV-MaxSonar-EZ4.
I’m anxious to begin our MaxBotix sonar project.

However, before we can run the range, we have to learn
how to ride.

The MaxBotix LV-MaxSonar
Ultrasonic Rangefinder

I seriously considered removing the MaxSonar-UT
ultrasonic rangefinder from the EZ0 you see in Photo 1
so that you could see its circuitry. Rather than taking a
chance on ruining my only one, I decided to show you
what the circuitry looks like schematically. Take a look at
Schematic 1. The EZ0 is under the control of a PIC16F676.
Since we don’t really know what the PIC is doing
programmatically, we can only take a guess as to what
the supporting circuitry is doing. If you take a look at the
MaxBotix forum, you’ll see that some students have

attempted to simulate the circuit you see in Schematic 1.
That’s nice. However, MaxBotix wants to keep their secret
formula for ultrasonic sensing under wraps. I respect that

SERVO 06.2008 43

75K

100K

VCC

100K

.1uF

VCC

VCC

1K

PIC16F676

1

2

3

4

6

7 8

9

10

11

12

13

14

5

VDD

RA5

RA4

RA3

RC4

RC3 RC2

RC1

RC0

RA2

RA1

RA0

VSS

RC5

S-TXR

100K

.1uF

100K

BAV99DW

1

2 5

6

3 4

D1A

D2C D4C

D1C

D3C D3A

VCC

TX

PW

.1uF

+

- LM324

3

2
1

4
11

.01uF

AN

VCC

1uF

+

-

LM32412

13
14

100K

100K 100K

100K

.01uF

100K

680pF

10K

680pF

RX

+

-

LM324
10

9
8

BW
1
2
3
4
5
6
7

2.7K
4.7K

680pF

+

- LM324

5

6
7

SCHEMATIC 1. This is presented for your viewing pleasure. Its
real purpose is to provide some advanced insight as to how
the ultrasonic transducer is supported and nothing more.

PHOTO 2. It doesn’t get
any better than this.

Each LV-MaxSonar-EZ0
I/O pin is clearly

marked. The black dot
is a color code that

identifies this unit as an
LV-MaxSonar-EZ0. The

LV-MaxSonar-EZ4 has a
yellow dot. I’m always

interested in looking at
printed circuit board
land patterns as you

never know what you
may find. Can you find

other “messages” in
this image?

Building a Sonar System

and that’s all we’ll say about the circuit shown in Schematic
1. After all, we’re only interested in putting the EZ0 to work.

All of the ultrasonic engineering has been done for us
by the MaxBotix engineers. All we really have to do to bring
the EZ0 online is to apply some power and follow some
very simple operational rules. The LV-MaxSonar series of
ultrasonic rangefinders can be powered by voltages as low
as 2.5 volts and as high as 5.5 volts. This power rail range
allows the LV-MaxSonar ultrasonic rangefinder family to
work with 3.3 volt systems, which are gaining popularity
due to their lower power consumption characteristics.

These ultrasonic rangefinders draw approximately 3.0
ma of current when powered by a 5.0 volt power source.
When powered by 3.0 volts, the rangefinders draw only
2.0 ma of current. That kind of current consumption allows
the LV-MaxSonar ultrasonic rangefinders to easily operate in
battery powered mobile systems.

As you can see in Schematic 1, the EZ0 (and all of
the other LV-MaxSonar ultrasonic rangefinders) interfaces
to the outside world with five I/O lines and two power
connections. A physical look at the EZ0 interface can
be seen in Photo 2. Let’s walk through each line of the
I/O interface.

Pin 1 is labeled “BW.” This pin is used when multiple
ultrasonic rangefinders need to be triggered. If triggering
multiple rangefinders is not part of your application, you
must tie the BW pin low or leave it open. Otherwise,
holding the BW pin logically high will force the EZ0’s TX pin
to produce a pulse instead of serial data. The pulse is used
to trigger other ultrasonic rangefinders in the rangefinder
network. An initial seed pulse to the RX pin of the first
LV-MaxSonar ultrasonic rangefinder in the chain is all that’s
needed to fire off the rest of the ultrasonic rangefinders
behind it in the chain.

“PW” marks pin 2 of the I/O interface. When the EZ0 is
ranging, the PW pin will emit a pulse that is relative to the
distance to the target object. The ranging pulse is defined
as 147 µs per inch.

If measuring pulse widths is not something your host
microcontroller will do easily, you can opt to receive your
ranging information from the EZ0’s AN pin. However, your
microcontroller will need to have an on-chip analog-to-
digital (A-to-D) converter subsystem to capture the AN
pin’s output. As you’ve probably deduced, the AN I/O pin
provides an analog voltage that is relative to the distance
to the target object. The distance is calculated as Vcc/512
volts per inch. Doing the math, we can count on 9.7656
mV per inch from the AN pin. The Vcc/512 ratio works
will with 10-bit A-to-D converters.

When the 10-bit A-to-D reference voltage is set to
+5.12 volts, each A-to-D step (not including zero) is 4.8828
mV, which happens to be half of the EZ0’s volts-per-inch
figure of 9.7656 mV. If we put my HP-15C to work on the
3.3 volt A-to-D figures, we come up with 6.4453 mV per
inch. The 3.3 volt ratio is not as pretty as the 5.12 volt
ratio, but if that’s what you have to run, you run it and
work with the hand you’re dealt. The LV-MaxSonar-EZ0 will

supply precise A-to-D voltages. Your microcontroller must
be able to handle the 3.3 volt A-to-D information accurately.
The AN output voltages are buffered and represent the
most recent ranging data.

You already have a clue as to the operation of the
LV-MaxSonar-EZ0’s RX pin. Recall that a pulse applied
to the RX pin of a chained ultrasonic rangefinder will
trigger a ranging operation. The RX pin is pulled logically
high. In single ultrasonic rangefinder designs, ranging
operations will be continuous if the RX pin is left open.
The RX pin can also be held logically high if your host
microcontroller needs to control the ranging process.
Otherwise, if the EZ0’s ultrasonic rangefinder RX pin is
pulled logically low, ranging will cease. A low-to-high
logical pulse with a duration of 20 µs or greater will trigger
a ranging operation.

The EZ0 TX pin is very interesting. As long as the
LV-MaxSonar-EZ0’s BW pin is open or held low, the TX pin
spouts asynchronous serial data in RS-232 format. Recall
that when the BW pin is forced to a logical high, the TX pin
will revert to sending pulses instead of RS-232 ranging data.
Although the TX pin issues data in RS-232 format at zero-to-
Vcc levels, you can hang the EZ0’s TX pin on your laptop’s
serial port interface. The signal levels at the TX pin are logic
levels and don’t adhere to true positive and negative RS-232
voltage levels. So, to be politically correct, you’ll need an
RS-232 converter circuit or IC to interface the EZ0’s TX
signal to a true RS-232 port. You can take your chances
with a direct interface between a PC serial port and the TX
pin as long as you never connect the serial port’s TX pin to
the LV-MaxSonar-EZ0 I/O interface. As long as you’re
pushing properly polarized data into the PC’s RX pin,
there’s a chance the serial interface will actually interpret
the zero-to-Vcc logic transitions as if they were RS-232
signals. My Lenovo laptop has no problems with the
LV-MaxSonar-EZ0 serial interface.

Once you’ve decided how to connect the EZ0’s TX pin,
your firmware should expect to see an ASCII “R” with three
ASCII character digits following. The three ASCII digits will
be your ranging data in inches. The maximum value of the
ranging data will be 255 inches. A carriage return character
(ASCII 13 or 0x0D) denotes the end of the ranging data
stream. Speeds and feeds for the TX I/O pin’s serial data
are standard: 9600 bps, eight data bits, no parity, and one
stop bit.

All of the methods of obtaining ranging data from
the EZ0 can be used simultaneously. All we need to do is
provide the necessary microcontroller interface to capture
the ranging data from our desired ranging data portal.
However, before we can start writing our I/O interface
code, we need to understand the LV-MaxSonar-EZ0’s timing
and power-up specifications.

LV-MaxSonar Timing
The LV-MaxSonar-EZ0 needs 250 ms of idle time

following power-up. After the 250 ms have passed, the EZ0

44 SERVO 06.2008

Building a Sonar System

is ready to process input on its
RX pin. Recall that if the RX pin
is left open or forced logically
high, the ranging process will
begin and continue until the RX
pin is pulled logically low. With
that, let’s run a scenario with
the RX pin open at power-up
plus 250 ms.

With the RX pin open or
forced logically high following
the setup time, the first ranging operation will be a 49 ms
calibration cycle. The next ranging operation will be the first
ranging operation that will report ranging data to the I/O
interface. Thus, the very first ranging data will appear at
the EZ0’s data portal 98 ms past the 250 ms power-up
setup period. All subsequent ranging operations will
consume 49 ms each. What this all means is that the
LV-MaxSonar-EZ0 can perform a ranging operation every
49 ms. If your application requires control of the ranging
process, the EZ0 will scan the RX line at the end of every
ranging cycle. This allows you to force the RX I/O pin
logically low and take control of the scheduling of the
subsequent ranging cycles.

Each ranging cycle is initiated by a logical high level at
the RX I/O pin. Thirteen 42 kHz waves are transmitted at
the beginning of a ranging cycle. After the 13 waves have
been sent, the PW I/O pin is pulled to a logically high
level. The PW pin will go logically low when a target object
is detected. As you would expect, the maximum length
of a PW pulse is 37.5 ms, or the equivalent of just over
255 inches. The maximum ranging distance of the
LV-MaxSonar-EZ0 is 254 inches.

The 37.5 ms pulse width will occur when no target
objects are detected. Assuming we didn’t detect a target
object, we still have 11.5 ms of time left in the ranging
cycle; 6.8 ms of the remaining ranging cycle time is used
to adjust the analog voltage that will appear on the AN
pin to the correct level. We still have 4.7 ms left. At this
point, the EZ0 has presented its pulse width ranging data
and its analog ranging data to the I/O interface. The
RS-232 ranging data is all that’s left to present. The
serial ranging data is sent during the final 4.7 ms of the
ranging cycle.

To guarantee successful ranging operations, all we have
to do is make sure that there are no targets closer than
seven inches to the ultrasonic rangefinder during its
calibration time. Also, the EZ0 is not an outdoor cat. So,

we must be sure to keep it out of harm’s way as far as
weather goes. We now have enough information to begin
writing some interface code. I’m going to write the EZ0
driver in C using HI-TECH PICC-18 and I’ll target the
PIC18F2620. Before we start writing code and assembling
hardware, we can use my CleverScope to check out the
LV-MaxSonar-EZ0’s pulse ranging data mechanism.

Ranging with a CleverScope
Let’s use our human eyes to interpret the EZ0 ranging

pulse I captured in Screenshot 1. The pulse width as
measured by the CleverScope extents is 9562.3 µs. A bit
of simple math will yield the distance from my coffee
tabletop to the ceiling:

9562.3 µs/147 µs per inch = 65.0496 inches

This is an easy way to receive instant gratification from
a ultrasonic rangefinder. However, to make the ranging
information work for us, we must employ the resources of
a microcontroller. My rangefinder support hardware is
visually obtainable in Schematic 2. As you can see, I’ve tied
the LV-MaxSonar ultrasonic rangefinder’s PW output pin to
the PIC18F2620’s CCP1 capture pin.

Ranging with a PIC18F2620
We need to electronically measure the pulse width

presented to the PIC18F2620’s CCP1 capture input. The
algorithm is simple and so is the code. We must set up the
PIC18F2620 capture engine to trigger an interrupt on the
rising edge of the PW ranging signal. Meanwhile, TIMER1 is
running free with a period of 1 µs. Thus, a count is supplied
to the CCP1 holding registers every microsecond. The
1 µs TIMER1 period is a direct result of us running the
PIC18F2620 system clock at 4 MHz. I programmatically

SERVO 06.2008 45

SCREENSHOT 1. This is a look at
a LV-MaxSonar-EZ0 ranging pulse
that is emitted from the ultrasonic
rangefinder’s PW pin. This pulse
happens to be 9562.3 µS wide.

With 147 µS representing one
inch, this pulse equates to

65.0496 inches to the target,
which happens to be the coffee

tabletop to ceiling distance.

Building a Sonar System

overrode the 20 MHz crystal you see in Schematic 2
with the PIC18F2620’s internal oscillator.

When the rising edge of the PW ranging signal triggers
an interrupt, we immediately read the value of the CCP1
holding registers and preserve that value in the pulsestart
variable. The next step we perform is to configure the CCP1
input to trigger on a falling edge. Meanwhile, the TIMER1
clock is still counting. When the falling edge occurs,
another interrupt is generated and we preserve the
contents of the CCP1 holding registers in the pulseend
variable.

The pulse width is the difference in the value of the
pulseend variable and the pulsestart variable. Since the
pulsewidth value is in microseconds, we can easily
determine the target distance in inches by dividing the
pulsewidth value by 147. Here’s a look at the PW pulse
capture interrupt handler code:

void interrupt MEASURE(void)
{

if(CCP1IE && CCP1IF)
{

//interrupt caused by rising edge of PW
if(flags.rising_edge)
{

//save start count
pulsestart = make16(CCPR1H,CCPR1L);

CCP1CON = 0b00000100;
//capture falling edge
flags.rising_edge = 0;
//setup for falling edge

}
else
//interrupt caused by falling edge of PW
{

//save end count
pulseend = make16(CCPR1H,CCPR1L);

AN

PIC VOLTAGE SELECT JUMPER

C6
.1uF

PW

OPTIONAL
390

VCC

VCC

JP2

R2 1K

+
C5
220uF

ICSP CONNECTOR

1
2
3

4
5
6

1
2
3

4
5
6

VCC

+3.3V

+
C3
220uF

R1
390

RX

C8
.1uF

5.0V

+5.0V

C7
.1uF

U2

PIC18F2620/PIC18LF2620

2
3
4
5

21
22
23
24
25
26

27

28

11
12
13
14
15
16
17
18

10

9

1

6
7

8
19

20

RA0
RA1
RA2
RA3

RB0
RB1
RB2
RB3
RB4
RB5

RB6/PGD

RB7/PGD

RC0
RC1/CCP2
RC2/CCP1

RC3
RC4
RC5

RC6/TX
RC7/RX

OSC2/RA6

OSC1/RA7

MCLR

RA4/T0CKI
RA5

GND
GND

VDD

VR1LM2940

IN

G
N

D

OUT

C11 20pF

LV-Max Sonar-EZ0

1 3 4 52 6 7

B
W

A
N

R
X

T
X

P
W

V
C

C
G

N
D

Q1

BC846B

3

1

2

VCC

Y1 20 MHz

+
C2
220uF

R4 1K

5.0V

+5.0V

OPTIONAL
ACTIVITY LED

J1

+6VDC to +9VDC

BW

VR2LM3940

IN
G

N
D

OUT

C12 20pF

VCC

R5
10K

3.3V

LED1

R1
100

R3
10K

RX

C4
.1uF

C9

.1uF

C1
.1uF

46 SERVO 06.2008

SCHEMATIC 2. As you have come to expect, there’s no rocket science
in my PIC design. All of the advanced hardware and firmware resides
within the confines of the LV-MaxSonar-EZ0 ultrasonic rangefinder.

Building a Sonar System

CCP1CON = 0b00000101;
//capture rising edge
flags.rising_edge = 1;
//setup for rising edge
flags.captured = 1;
//signal captured pulse

}
CCP1IF = 0; //clear the CCP1 interrupt flag

}
}

The interrupt handler is steered by the flags.rising_edge
flag, which is a logical one for capturing the rising edge of
the PW ranging pulse and a logical zero for capturing the
falling edge of the PW ranging pulse. The flags.captured bit
signals the main body code that a valid set of pulse width
values has been captured. Here’s how the flag bits were
realized in code:

typedef struct {
charrising_edge:1;
charcaptured:1;

} FFlags;

FFlags flags;

I created a structure of type FFlags, which consists
of two bits, rising_edge, and captured. The instantiated
structure flags are based on the structure FFlags. FFlags is
reusable. For instance, I could instantiate a structure of bits
called pwbits in this way:

FFlags pwbits;

The bits contained within the structure pwbits are
referenced in the following manner:

pwbits.rising_edge = 1;
pwbits.captured = 0;

Although the bits rising_edge and captured are
common to both structures, they are separate entities and
can be used together in the same body of code. Defining flag
bits this way is just a fancy (and easier) way of doing this:

char flags;
#define rising_edge 0x01 //rising_edge bit
#define captured 0x02 //captured bit

//rising_edge = 0
#define clr_rising_edge flags &= ~rising_edge

//rising_edge = 1
#define set_rising_edge flags |= rising_edge

//captured = 0

#define clr_captured flags &= ~captured

//captured = 1
#define set_captured flags |= captured

Let’s take a look at the main body code that summons
the services of the capture interrupt handler we call
MEASURE. Recall that the ultrasonic rangefinder needs
250 ms of time to get its act together after power-up.
Also recall that the rangefinder’s first ranging cycle is a
calibration run. So, to make sure the EZ0 ultrasonic range
finder is ready for work, we allow it to run free for a while:

//***
//* MAIN SERVICE LOOP
//***
void main(void)
{

init();
//allow TIME to calibrate
RX = 1;

for(temp16=0;temp16<0xFF;++temp16) {
NOP();

}
RX = 0;

After we’re sure the LV-MaxSonar rangefinder is ready
to go, we turn our attention to the PIC18F2620 and set up
the PIC’s capture subsystem:

CCP1CON = 0b00000101; //capture rising edge
CCP1IE = 1; //enable capture interrupt
CCP1IF = 0; //clear capture interrupt flag
reset_TIMER1(); //initialize TIMER1 and start it

We are now ready to let the main loop take control:

do{
enable_GLOBALint; //enable interrupts
RX = 1; //kick off a ranging cycle

do{
NOP(); //wait for ranging to complete

} while(!flags.captured);

SERVO 06.2008 47

PHOTO 3. Nothing fancy here except the LV-MaxSonar-
EZ0 ultrasonic rangefinder. From left to right we have a

dual-rail +3.3/+5.0 volt regulated power supply, the
PIC18F2620, and the EZ0 ultrasonic rangefinder.

Building a Sonar System

disable_GLOBALint; //disable
//interrupts

RX = 0; //cease ranging

//compute pulsewidth and distance
//in inches
pulsewidth = pulseend - pulsestart;
// in ms
distance = pulsewidth / 147;
//147us = 1”

flags.captured = 1; //do it all
//again

reset_TIMER1();
} while(1);

The result of running the PW code
through a ranging cycle is captured in
Screenshot 2. Enough said.

Ranging with an Analog-
to-Digital Converter

I put my Meterman DM73B multimeter
leads across the +5 volt power supply of
the rangefinder support hardware you see
in Photo 3. My +5 volt power supply is
actually producing +4.97 VDC. Using the
AN portal scaling factor (Vcc/512) and my
actual power supply voltage (4.97 volts)
yields a conversion factor of 9.707 mV per
inch. With an A-to-D reference voltage
equal to the power supply voltage, the
PIC18F2620’s A-to-D step voltage works
out to 4.858 mV per step.

To get the ranging information from
the EZ0’s AN output pin into the
PIC18F2620, I attached it to the
PIC18F2620’s RA0 analog input. To obtain
the target distance, I sprinkled in a bit of
A-to-D code onto our PW code:

do{
GODONE = 1; //trigger an AD

//conversion
while(GODONE); //wait for the

//conversion to
//end

} while(!flags.captured);

Rather than just spin around doing

SCREENSHOT 2. The proof is in the
pudding. The distance value matches our
CleverScope observation.

SCREENSHOT 4. It doesn’t get much easier
than this. All I had to do was add a transistor
and some PIC18F2620 EUSART code to get
this result.

48 SERVO 06.2008

Building a Sonar System

SCREENSHOT 3. The analogdistance value is actually the number of 4.858 mV
steps measured by the PIC18F2620’s analog-to-digital converter subsystem.
To get the distance, we must multiply the number of steps and the voltage per
step values and divide the product by the AN scaling factor.

nothing while waiting for the pulse width distance
figure to be computed, I replaced the NOP (No Operation)
instruction with an A-to-D conversion trigger. A ranging
cycle with the new A-to-D code resulted in the
analogdistance value you see in Screenshot 3. To
convert the analogdistance voltage value to inches, we
do the following:

1) Convert the analogdistance raw value to volts: 0x80 *
4.858 mV = 0.6218 volts.

2) Convert volts to inches: 0.6218
volts/9.707 mV = 64.062 inches.

If we consider the PW distance
golden, the A-to-D distance value is
well within tolerances, considering I’m
feeding the PIC18F2620’s A-to-D
converter with a piece of wirewrap
wire hung out in the wind. Let’s see
what the TX output has to say.

Automatic Ranging with
the TX Output

Transistor Q1 in Schematic 2 is
acting as an inverter. If we are to
make any sense of the TX ASCII
output, we must invert the TX serial
data before presenting it to the
PIC18F2620 RX input. The
PIC18F2620 doesn’t have a native
method of inverting the data that is
coming into its EUSART. So, Q1 acting
as a logic inverter is a necessary
hardware addition. From the looks
of Screenshot 4, it appears 64
inches is the consensus distance
determination.

Home on the Range
I’ve had a great time experiment-

ing with my set of LV-MaxSonar ultrasonic rangefinders.
I’ll post all of the PIC18F2620 LV-MaxSonar ultrasonic
rangefinder driver code we talked about plus the
PIC18F2620 RS-232 driver code on the SERVO
website (www.servomagazine.com) so that you
can have just as much fun with your LV-MaxSonar
ultrasonic rangefinder as I had with mine. See you
next time! SV

SERVO 06.2008 49

MaxBotix — www.maxbotix.com
LV-MaxSonar Ultrasonic

Rangefinders

HI-TECH Software —
www.htsoft.com

HI-TECH PICC-18 C Compiler

Microchip — www.microchip.com
PIC18F2620

Resources

Building a Sonar System

Fred Eady can be reached via email at fred@edtp.com.

	042_S
	043_S
	044_S
	045_S
	046_S
	047_S
	048_S
	049_S

