
Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

Introduction
After reading about AmForth on hack-a-day I looked around for a project to use it with. I decided to
build an Arduino Controlled Digital FM radio with LCD display to gain some experience with
AmForth and to bring back my Forth chops that I hadn't used in a very long time. The result is an FM
radio that is fully remote controllable that I listen to with headphones while I am working. This project
uses relatively simple hardware that can be built by anyone with basic electronic assembly experience.
The software however is somewhat complex and took me some time to get working. More on the
software a little later.

I place this hardware and software in the public domain so anyone can do with it as they please.

If you add a cool feature to the radio, please send me a note at: calhjh@gmail.com and let me know so I
can incorporate it into my radio as well.

Hardware
The hardware is built around an Arduino Uno board running at 16 MHz and 5 volts. Other Arduino's
could be used but some of the I/O pin assignment would need to change. Using an Arduino running at a
different speed will also impact the design especially in the IR (Infra Red) detection area. I use an IR
remote control from adafruit.com (see Figure Three) to control the radio. There are no other controls at
all besides a display contrast trimmer adjustment for the LCD which should be set once and left alone.

The parts list for the build in shown in Figure One and a schematic of the hardware is shown in Figure
Two. I built my radio using point to point wiring but a prototyping shield could be used for a cleaner
build.

I packaged my radio using two 4”x6” pieces of clear 1/8” acrylic in a sandwich arrangement held
together with wooden 1 1/2” dowel spacers. I like the look of the naked electronics. The LCD display is
mounted to the front acrylic piece and the Arduino Uno and receiver board are mounted to the rear
piece. See the photos for details.

The LCD display provides a 4 bit parallel data interface to the Arduino while the Si-4703 FM receiver
is connected to the Arduino via an i2c serial interface. Since the Arduino Uno is a 5 volt part and the
FM receiver is a 3.3 volt part, a bi-directional level converter must be used between them. The LCD
display runs on 5 volts. The backlight for the LCD display is controlled by an output pin from the
Arduino.

The stereo audio output cable is used as the antenna for the FM receiver so you must pay attention to
the length of the interconnect. The cord on the headphones I use works fine as an antenna as I can pick
up all of the FM stations in my area. When strong stations are tuned in, the audio quality is top notch.
When the receiver is receiving a stereo broadcast, the stereo indicator on my build lights up. Weaker

Page 1

Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

stations are received in mono and the stereo indicator remains dark. A red power on LED lights when
the radio is on.

An IR receiver (which is what Radio Shack calls it) is used to detect IR codes from the remote control.
It filters out the 38 KHz IR carrier frequency thereby making detection of the key codes easier (though
not easy).

The radio is powered via a USB cable and USB power supply. Alternatively the radio can be powered
by connection to a USB port on your computer.

Software

Development Environment

I developed all of the AmForth software on my MacBook Pro using amforth-shell.py described in the
AmForth documentation. Using the shell makes software development fast and convenient. All of the
AmForth source files I use have a marker placed at the beginning of the file of the form underscore
markerName underscore. That way I can easily unload/forget faulty code before I load a newer version.
I installed amforth-shell.py as an alias called 4thterm via the following entry in my .profile file.
#AMFORTH=~/Documents/dev/AmForth/amforth-5.1

#AMFORTH_LIB=$AMFORTH/lib:$AMFORTH/examples:$AMFORTH/../lcd_driver

#export AMFORTH_LIB

AMFORTH=~/Documents/dev/AmForth

AMFORTH_LIB=$AMFORTH

export AMFORTH_LIB

alias 4thterm="$AMFORTH/amforth-5.1/tools/amforth-shell.py -p /dev/tty.usbmodem1411 --no-error-on-
output"

Then I can bring up amforth-shell by typing 4thterm in any shell window. Quite convenient.

Software Components

Although the AmForth software spans many files, there are really three blocks of functionality that
need to be discussed.

IR Detection

IR detection was by far the trickiest part of the software to get running. The code is contained in the file
irDetect.frt. The software is tricky because of its real time nature of IR transmissions. Here, the Forth
code polls the output of the IR receiver looking for transitions called MARKs and SPACEs. I won't go
into the details here but the codes broadcast by a IR remote control form a serial protocol with the
lengths of the MARKs determining where the codes start and which bits are to be considered ones and
zeros. This code doesn't try to actually decode the codes being sent, instead it creates an identifier via
hashing that uniquely identifies the keys on the remote. Consult the code for the details. If you want to

Page 2

Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

use a different remote with your radio, changes to this code will be necessary.

LCD Display

As mentioned a 4 bit parallel interface is used between the 16 character, 2 line LCD display and the
Arduino. The software must first put the LCD display controller into 4 bit mode by executing a series
of instructions which it does in its initLCD method. Numerous Forth words exists for controlling the
display, positioning the cursor and writing text to the display. See the file lcd_16x2.frt for the details.
The backlight of the display is controlled via an output pin on the Arduino and can be switch on and off
without affecting the display content.

Si-4703 Receiver Control

The Si-4703 FM receiver is controlled using a series of 16 16 bit registers. In a typical operation the
registers are read from the chip, values are changed and the updated register values are sent back
causing the receiver chip to react. The Si-4703 chip has some idiosyncrasies that made code
development interesting. For example all registers must be read each time and the Si-4703 provides the
register content in the following order: reg 10 … reg 15 followed by reg 0 … reg 9. The code for
controlling the Si-4703 is contained in the file si4703.frt.

There are Forth words available for setting the volume, setting the channel, reading the channel,
seeking upwards or downwards, etc. The code I developed just scratches the surface of what the Si-
4703 can do. I'm still working on code to read the RDS data provided by the receiver which identifies
the radio station, the song being played and even the current date and time. In the future I hope to be
able to display this information on the LCD display.

The file ui.frt brings all of the software modules together and forms the user interface for the radio.

Installation

Starting with the stock Arduino Uno installation I use amforth-shell.py to load the required Forth files. I
call the file who's content is shown below loadall.frt. If you #include this file after a new AmForth
install it will load up all the Forth files in the correct order.

\ Load up all pre-requisite forth files

#include postpone.frt
#include marker.frt

marker _EMPTY_

#include case.frt
#include buffer.frt

Page 3

Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

#include bitnames.frt
#include twi.frt
#include si4703.frt
#include irDetect.frt
#include lcd_16x2.frt
#include ui.frt

If all is well and everything loaded/compiled successfully, executing the top level word runFMRadio
should start the radio. NOTE: the radio will appear off until you click the play/pause button on the
remote. At this time the display will light up and the radio becomes functional. Clicking play/pause
again makes the radio appear off though it is still listening for the IR code to turn it back on. Figure
Three details the remote control key assignments. NOTE: runFMRadio is configured to run as a
turnkey application which means it will run automatically when every time the receiver is powered up.

Resources
Information about the Si-4703 digital FM receiver can be found at the manufactures website at:
www.silabs.com. AN230, AN231, AN243 are application notes concerning the Si-470x series parts.
AN332 provides example code useful for programmers.

Page 4

Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

Figure One
Parts List

Item Part Number Source

Arduino Uno 16Mhz 5 volt part SparkFun, AdaFruit, Radio
Shack, eBay

Bi-directional Level Converter BOB-12009 SparkFun

Evaluation Board for Si4703 FM
Tuner

WRL-10663 SparkFun

16x2 line LCD display many SparkFun, AdaFruit, Radio
Shack, eBay

IR Receiver #2760640 Radio Shack

Red LED many anywhere

Yellow LED many anywhere

2 x 300 ohm ¼ w resistor many anywhere

10K ohm 10 turn trimmer many anywhere

Mini Remote Control ID: 389 AdaFruit

USB cable
for Arduino to USB power

supply connection

many SparkFun, AdaFruit, Radio
Shack, eBay

USB power supply
500 mA or greater

many anywhere

.1” male break away header pins
for Arduino connectors

many SparkFun, AdaFruit, eBay

Wire, solder, packaging, etc

Page 5

Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

Figure Two
Schematic Diagram

Page 6

16x2
LCD

Vss

Vcc

Vo

RS

R/W

E
DB0

DB1
DB2
DB3

DB4
DB5

DB6
DB7

LED+

LED-

Arduino FM Receiver with LCD Display

Designed by: Craig A. Lindley Date: 12/15/2013

Version: 1.0

Bi-Directional
Level

Converter
BOB-12009

Si-4703
Digital

FM
Radio

Receiver
WRL-10663

Arduino Uno
16 MHz
5V Part

HV1

HV2

HV3

LV1

LV2

LV3

GNDGND

HV LV

3.3V 5V

GND

3.3V

GND

A4

SDIO

A5

SDIO

SCLK

SCLK

2
PD2

RST

Stereo Audio Output
jack on board

Contrast Adjustment

10K Ohm Trimmer

Power On Indicator

Stereo Indicator

IR
Receiver
2760640

Out
V5

GND

1

2

3

PB0
8

PB1
9

PB2
10

11

12

13

PD3 3

PB3
PB4

PB5

red

yellow

PD6

6

4

PD4

USB Power Connector

3

7

5

6

8

1

16

300 ohm

300 ohm
LED

LED

Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

Figure Three
IR Mini Remote Control

Remote Control Functions Coded into the Firmware

Key Function

Vol- Mutes the audio

Play Pause Turns the radio off and on

Vol+ Un-mutes the audio

Up Arrow Volume Up

Down Arrow Volume Down

Left Arrow Scan Down for a station/channel

Right Arrow Scan Up for a station/channel

Enter Save Sets up for saving a preset. Tune a station, press
Enter Save and then a key 1 .. 9 to save a preset.

Keys 1 .. 9 Tunes station if preset set, otherwise does nothing

Page 7

Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

Photo One
Three Components – LCD, Arduino Uno and Receiver Board

Page 8

Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

Photo Two
Receiver Board Close Up

At the top is the evaluation board with the black 1/8” stereo output jack, in the middle is the IR receiver
facing upward, towards the bottom is the four channel level converter, the yellow rectangular LED is

the stereo indicator and the red LED is the power on indicator

Page 9

Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

Photo Three
The Working Receiver in its prototype packaging

On the left is the USB cable powering the receiver. On the right I have my headphones plugged onto
the receiver. The contrast adjusting trimmer can be seen on the left top of the LCD display.

Page 10

